Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Self-organization, complexity and chaos: The new biology for medicine

The self-organization of cells into complex interacting systems can be described using a branch of mathematics called nonlinear dynamics, which includes the study of chaos. Here, Donald Coffey explains how analysis of complex biological systems using nonlinear dynamics sheds light on the events leading to disorders as varied as epilepsy, heart disease and cancer

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Glanz, J. Mastering the Nonlinear Brain. Science 277, 1758–1760 (1997).

    Article  CAS  Google Scholar 

  2. Langton, C.G., Taylor, C., Fanner, D. & Rassmussen, S. Artificial Life II. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Vol. 10 (Addison-Wesley, Redwood City, California, 1992).

    Google Scholar 

  3. Kauffman, S.A. in The Origin of Order: Self-Organization and Selection in Evolution (Oxford University Press, Oxford, 1993).

    Google Scholar 

  4. Biebricher, C.K., Nicolis, G. & Schuster, P. Self-Organization in the Physico-Chemical and Life Sciences. EUR Report No. 16546 European Commission, Brussels, Belgium (1995).

  5. Goldberg, A.L., Rigney, D.A. & West, B.J. Chaos and fractals in human physiology. Sci. Am. 262, 42–49 (1990).

    Article  Google Scholar 

  6. Gleick, J. Chaos (Viking, New York, 1987).

    Google Scholar 

  7. Lewin, R.S. in Complexity: Life at the Edge of Chaos (Collier Books, New York, 1993).

    Google Scholar 

  8. Sugihara, G., Allan, W., Sobel, D. & Allan, K.D. Nonlinear control of heart rate variability in human infants. Proc. Natl. Acad. Sci. USA 93, 2608–2613 (1996).

    Article  CAS  Google Scholar 

  9. Schiff, S.J. et al. Controlling chaos in the brain. Nature 370, 615–620 (1994).

    Article  CAS  Google Scholar 

  10. Denton, T.A., Diamond, G.A., Helfant, R.H., Kahn, S. & Karagueuzian, H. Fascinating rhythm: A primer on chaos theory and its application to cardiology. Am. Heart J. 120, 1419–1440 (1990).

    Article  CAS  Google Scholar 

  11. Poon, C-S. & Merril, C.K. Decrease of cardiac chaos in congestive heart failure. Nature 389, 492–495 (1997).

    Article  CAS  Google Scholar 

  12. Garfinkel, A., Spano, M.L., Ditto, W.L. & Weiss, J.N. Controlling cardiac chaos. Science 257, 1230–1235 (1992).

    Article  CAS  Google Scholar 

  13. Gupta, S., Ferguson, N. & Anderson, R. Chaos, persistence and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).

    Article  CAS  Google Scholar 

  14. Budrene, E.O. & Berg, H.C. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995).

    Article  CAS  Google Scholar 

  15. Davies, D.G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. cience 280, 295–298 (1998).

    CAS  Google Scholar 

  16. Eigen, M. Viral quasispecies. Sci. Am. 269, 42–49 (1993).

    Article  CAS  Google Scholar 

  17. Posadas, E.M., Criley, S.R., & Coffey, D.S. Chaotic oscillations in cultured cells: Rat prostate cancer. Cancer Res. 56, 3682–3688 (1996).

    CAS  PubMed  Google Scholar 

  18. Schwab, E.D. & Pienta, K.J. Explaining abberations of cell structure and cell signaling in cancer using complex adaptive systems. in Advances in Molecular and Cell Biology Vol. 24 (eds. Bittar, E.E. and Getzenberg, R.H.) 207–247 (JAI, London, 1997).

    Google Scholar 

  19. Malins, D.C., Polissar, N.L., Schaefer, S., Su, Y. & Vinson, M. A unified theory of carcinogenesis based on order-disorder transitions in DNA structure as studied in human ovary and breast. Proc. Natl. Acad. Sci. USA 95 (13)7637–7642 (1998).

    Article  CAS  Google Scholar 

  20. Adami, C. in Introduction to Artificial Life. (Springer, New York, 1998).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, D. Self-organization, complexity and chaos: The new biology for medicine. Nat Med 4, 882–885 (1998). https://doi.org/10.1038/nm0898-882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing