Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attenuated multi–mutated herpes simplex virus–1 for the treatment of malignant gliomas

Abstract

We have created a double mutant of the herpes simplex virus (HSV) type 1 (termed G207) with favourable properties for treating human malignant brain tumours: replication–competence in glioblastoma cells (and other dividing cells), attenuated neurovirulence, temperature sensitivity, ganciclovir hypersensitivity, and the presence of an easily detectable histochemical marker. G207 has deletions at both γ34.5 (RL1) loci and a lacZ gene insertion inactivating the ICP6 gene (UL39). G207 kills human glioma cells in monolayer cultures. In nude mice harbouring subcutaneous or intracerebral U–87MG gliomas, intraneoplastic inoculation with G207 causes decreased tumour growth and/or prolonged survival. G207 is avirulent upon intracerebral inoculation of mice and HSV–sensitive non–human primates. These results suggest that G207 should be considered for clinical evaluation in the treatment of glioblastomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mahaley, M.S. Jr, Mettlin, C., Natarajan, N., Laws, E.R. Jr & Peace, B.B. National survey of patterns of care for brain-tumor patients. J. Neurosurg. 71, 826–836 (1989).

    Article  Google Scholar 

  2. Martuza, R.L., Malick, A., Markert, J.M., Ruffner, K.L. & Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854–856 (1991).

    Article  CAS  Google Scholar 

  3. Markert, J.M., Malick, A., Coen, D.M. & Martuza, R.L. Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 35, 597–603 (1993).

    Article  Google Scholar 

  4. Mineta, T., Rabkin, S.D. & Martuza, R.L. Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res. 54, 3963–3966 (1994).

    CAS  PubMed  Google Scholar 

  5. Kaplitt, M.G. et al. Mutant herpes simplex virus induced regression of tumors growing in immunocompetent rats. J. Neuro-Oncol. 19, 137–147 (1994).

    Article  CAS  Google Scholar 

  6. Jia, W.W., McDermott, M., Goldie, J., Cyander, M., Tan, J. & Tufaro, F. Selective destruction of gliomas in immunocompetent rats by thymidine kinase-defective herpes simplex virus type 1. J. natn. Cancer Inst. 86, 1209–1215 (1994).

    Article  CAS  Google Scholar 

  7. Boviatsis, E.J. et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Ther. 1, 323–331 (1994).

    CAS  PubMed  Google Scholar 

  8. Coen, D.M. et al. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeninal ganglia but do not reactivate. Proc. natn. Acad. Sci. U.S.A. 86, 4736–4740 (1989).

    Article  CAS  Google Scholar 

  9. Goldstein, D.J. & Weller, S.K. Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensible for virus growth and DNA synthesis: Isolation and characterization of an ICP6 lacZ insertion mutant. J. Virol. 62, 196–205 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chou, J., Kern, E.R., Whitley, R.J. & Roizman, B. Mapping of herpes simplex virus-1 neurovirulence to gamma 34.5, a gene nonessential for growth in culture. Science 250, 1262–1266 (1990).

    Article  CAS  Google Scholar 

  11. Preston, V.G., Palfreyman, J.W. & Duita, B.M. Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. J. gen. Virol. 65, 1457–1466 (1984).

    Article  CAS  Google Scholar 

  12. Jacobson, J.G. et al. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173, 276–283 (1989).

    Article  CAS  Google Scholar 

  13. Chou, J. & Roizman, B. The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. J. Virol. 57, 629–637 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dolan, A., McKie, E., MacLean, A.R. & McGeoch, D.J. Status of the ICP34.5 gene in herpes simplex virus type 1 strain 17. J. gen. Virol 73, 971–973 (1992).

    Article  CAS  Google Scholar 

  15. Whitley, R.J., Kern, E.R., Chatterjee, S., Chou, J. & Roizman, B. Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 34.5 deletion mutants in rodent models. J. clin. Invest. 91, 2837–2843 (1993).

    Article  CAS  Google Scholar 

  16. MacLean, A.R., Ul-Fareed, M., Robertson, L., Harland, J. & Brown, S.M. Herpes simplex virus type 1 variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J. gen. Virol. 72, 631–639 (1991).

    Article  CAS  Google Scholar 

  17. Bolovan, C.A., Sawtell, N.M. & Thompson, R.L. ICP34.5 mutants of herpes simplex virus type 1 strain 17 syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J. Virol. 68, 48–55 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ausubel, F.M. et al. Current Protocols in Molecular Biology (Wiley-Interscience, New York, 1991).

    Google Scholar 

  19. Southern, E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  20. Knipe, D.M., Batterson, W., Nosal, C., Roizman, B. & Buchan, A. Molecular genetics of herpes simplex virus. VI. Characterization of a temperature-sensitive mutant defective in the expression of all early viral gene products. J. Virol. 38, 539–547 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldstein, D.J. & Weller, S.K. Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: Characterization of an ICP6 deletion mutant. Virology 166, 41–51 (1988).

    Article  CAS  Google Scholar 

  22. Coen, D.M., Goldstein, D.J. & Weller, S.K. Herpes simplex virus ribonucleotide reductase mutants are hypersensitive to acyclovir. Antimicrob. Agents Chemother. 33, 1395–1399 (1989).

    Article  CAS  Google Scholar 

  23. Yamada, Y. et al. The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type1 in mice. J. infect. Dis. 164, 1091–1097 (1991).

    Article  CAS  Google Scholar 

  24. Cameron, J.M. et al. Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J. gen. Virol. 69, 2607–2612 (1988).

    Article  CAS  Google Scholar 

  25. Hershkovitz, P. Two new species of night monkeys, genus Aotus (Cebidae, Platyrhini): A preliminary report on Aotus taxonomy. Am. J. Primatol. 4, 209–243 (1983).

    Article  Google Scholar 

  26. Aikawa, M. et al. An atlas of renal disease in Aotus monkeys with experimental plasmodial infection (American Institute of Biological Sciences, Washington, DC, 1988).

    Google Scholar 

  27. Hunt, R.D. Herpesvirus simplex infection. in Nonhuman Primates, Vol. I (eds Jones, T.C., Mohr, U. & Hunt, R.D.) 82–86 (Springer, Berlin, 1993).

    Chapter  Google Scholar 

  28. Katzin, D.S., Connor, J.D., Wilson, L.A. & Sexton, R.S. Experimental herpes simplex infection in the owl monkey. Proc. Soc. exp. Biol. Med. 125, 391–398 (1967).

    Article  CAS  Google Scholar 

  29. Melendez, L.V., Espana, C., Hunt, R.D., Daniel, M.D. & Garcia, F.G. Natural herpes simplex infection in the owl monkey (Aotus trivirgatus). Lab. Anim. Care 19, 38–45 (1969).

    CAS  PubMed  Google Scholar 

  30. Meignier, B., Martin, B., Whitley, R.J. & Roizman, B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J. infect. Dis. 162, 313–321 (1990).

    Article  CAS  Google Scholar 

  31. Baringer, J.R. & Pisani, P. Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction. Ann. Neurol. 36, 823–829 (1994).

    Article  CAS  Google Scholar 

  32. Asou, H., Hirano, S. & Kohsaka, S. Changes in ganglioside composition and morphological features during the development of cultured astrocytes from rat brain. Neurosci. Res. 6, 369–375 (1989).

    Article  CAS  Google Scholar 

  33. McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  Google Scholar 

  34. Messer, A. The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Res. 130, 12–23 (1977).

    Google Scholar 

  35. Kaplitt, M.G. et al. Expression of a functional foreign gene in adult mammalian brain following in vivo transfer via a herpes simplex virus type 1 defective viral vector. Molec. cell. Neurosci. 2, 320–330 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mineta, T., Rabkin, S., Yazaki, T. et al. Attenuated multi–mutated herpes simplex virus–1 for the treatment of malignant gliomas. Nat Med 1, 938–943 (1995). https://doi.org/10.1038/nm0995-938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0995-938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing