Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reticulon family members modulate BACE1 activity and amyloid-β peptide generation

Abstract

Inhibiting the activity of the β-amyloid converting enzyme 1 (BACE1) or reducing levels of BACE1 in vivo decreases the production of amyloid-β. The reticulon family of proteins has four members, RTN1, RTN2, RTN3 and RTN4 (also known as Nogo), the last of which is well known for its role in inhibiting neuritic outgrowth after injury. Here we show that reticulon family members are binding partners of BACE1. In brain, BACE1 mainly colocalizes with RTN3 in neurons, whereas RTN4 is more enriched in oligodendrocytes. An increase in the expression of any reticulon protein substantially reduces the production of Aβ. Conversely, lowering the expression of RTN3 by RNA interference increases the secretion of Aβ, suggesting that reticulon proteins are negative modulators of BACE1 in cells. Our data support a mechanism by which reticulon proteins block access of BACE1 to amyloid precursor protein and reduce the cleavage of this protein. Thus, changes in the expression of reticulon proteins in the human brain are likely to affect cellular amyloid-β and the formation of amyloid plaques.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of reticulon proteins with BACE1.
Figure 2: Localization of RTN3 and RTN4A-RTN4B in brains and cells.
Figure 3: Changes in Aβ in cells transfected with reticulon proteins.
Figure 4: Full-length APP is increased in RTN3-transfected cells.
Figure 5: Reduced expression of RTN3 increases secretion of Aβ.
Figure 6: RTN3 blocks BACE1 interactions with APP.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Vassar, R. et al. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  Google Scholar 

  2. Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity. Nature 402, 533–537 (1999).

    Article  CAS  Google Scholar 

  3. Sinha, S. et al. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402, 537–540 (1999).

    Article  CAS  Google Scholar 

  4. Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci. 14, 419–427 (1999).

    Article  CAS  Google Scholar 

  5. Farzan, M., Schnitzler, C.E., Vasilieva, N., Leung, D. & Choe, H. BACE2, a β-secretase homolog, cleaves at the β-site and within the amyloid-β region of the amyloid-β precursor protein. Proc. Natl. Acad. Sci. USA 97, 9712–9717 (2000).

    Article  CAS  Google Scholar 

  6. Yan, R., Munzner, J., Shuck, M. & Bienkowski, M. BACE2 functions as an alternative α-secretase in cells. J. Biol. Chem. 276, 34019–34027 (2001).

    Article  CAS  Google Scholar 

  7. Bennett, B.D. et al. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer's β-secretase. J. Biol. Chem. 275, 37712–37717 (2000).

    Article  CAS  Google Scholar 

  8. Benjannet, S. et al. Post-translational processing of β-secretase (β-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-β production. J. Biol. Chem. 276, 10879–10887 (2001).

    Article  CAS  Google Scholar 

  9. Capell, A. et al. Maturation and pro-peptide cleavage of β-secretase. J. Biol. Chem. 275, 30849–30854 (2000).

    Article  CAS  Google Scholar 

  10. Pinnix, I. et al. Convertases other than furin cleave β-secretase to its mature form. FASEB J. 15, 1810–1812 (2001).

    Article  CAS  Google Scholar 

  11. Yan, R., Han, P., Miao, H., Greengard, P. & Xu, H. The transmembrane domain of the Alzheimer's β-secretase (BACE1) determines its late Golgi localization and access to β-amyloid precursor protein (APP) substrate. J. Biol. Chem. 276, 36788–36796 (2001).

    Article  CAS  Google Scholar 

  12. Cai, H. et al. BACE1 is the major β-secretase for generation of Aβ peptides by neurons. Nat. Neurosci. 4, 233–234 (2001).

    Article  CAS  Google Scholar 

  13. Luo, Y. et al. Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation. Nat. Neurosci. 4, 231–232 (2001).

    Article  CAS  Google Scholar 

  14. Roberds, S.L. et al. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet. 10, 1317–1324 (2001).

    Article  CAS  Google Scholar 

  15. Citron, M. Alzheimer's disease: treatments in discovery and development. Nat. Neurosci. 5, 1055–1057 (2002).

    Article  CAS  Google Scholar 

  16. Oertle, T. & Schwab, M.E. Nogo and its paRTNers. Trends Cell Biol. 13, 187–194 (2003).

    Article  CAS  Google Scholar 

  17. Woolf, C.J. No Nogo: now where to go? Neuron 38, 153–156 (2003).

    Article  CAS  Google Scholar 

  18. Prinjha, R. et al. Inhibitor of neurite outgrowth in humans. Nature 403, 383–384 (2000).

    Article  CAS  Google Scholar 

  19. Chen, M.S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    Article  CAS  Google Scholar 

  20. GrandPré, T., Nakamura, F., Vartanian, T. & Strittmatter, S.M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444 (2000).

    Article  Google Scholar 

  21. Bandtlow, C.E. & Schwab, M.E. NI-35/250/Nogo-A: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS. Glia 29, 175–181 (2000).

    Article  CAS  Google Scholar 

  22. Moreira, E.F., Jaworski, C.J. & Rodriguez, I.R. Cloning of a novel member of the reticulon gene family (RTN3): gene structure and chromosomal localization to 11q13. Genomics 58, 73–81 (1999).

    Article  CAS  Google Scholar 

  23. van de Velde, H.J. et al. NSP-encoded reticulons are neuroendocrine markers of a novel category in human lung cancer diagnosis. Cancer Res. 54, 4769–4776 (1994).

    CAS  PubMed  Google Scholar 

  24. Roebroek, A.J., Contreras, B., Pauli, I.G. & van de Ven, W.J. cDNA cloning, genomic organization, and expression of the human RTN2 gene, a member of a gene family encoding reticulons. Genomics 51, 98–106 (1998).

    Article  CAS  Google Scholar 

  25. Huber, A.B., Weinmann, O., Brosamle, C., Oertle, T. & Schwab, M.E. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J. Neurosci. 22, 3553–3567 (2002).

    Article  CAS  Google Scholar 

  26. Wang, X. et al. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J. Neurosci. 22, 5505–5515 (2002).

    Article  CAS  Google Scholar 

  27. van de Velde, H.J., Roebroek, A.J., Senden, N.H., Ramaekers, F.C. & Van de Ven, W.J. NSP-encoded reticulons, neuroendocrine proteins of a novel gene family associated with membranes of the endoplasmic reticulum. J. Cell Sci. 107, 2403–2416 (1994).

    CAS  PubMed  Google Scholar 

  28. Oertle, T. et al. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J. Neurosci. 23, 5393–5406 (2003).

    Article  CAS  Google Scholar 

  29. Yu, G. et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407, 48–54 (2000).

    Article  CAS  Google Scholar 

  30. Francis, R. et al. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell 3, 85–97 (2002).

    Article  CAS  Google Scholar 

  31. Kim, S.H., Ikeuchi, T., Yu, C. & Sisodia, S.S. Regulated hyperaccumulation of presenilin-1 and the 'γ-secretase' complex. Evidence for differential intramembranous processing of transmembrane substrates. J. Biol. Chem. 278, 33992–34002 (2003).

    Article  CAS  Google Scholar 

  32. Kimberly, W.T. et al. γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. USA 100, 6382–6387 (2003).

    Article  CAS  Google Scholar 

  33. Takasugi, N. et al. The role of presenilin cofactors in the γ-secretase complex. Nature 422, 438–441 (2003).

    Article  CAS  Google Scholar 

  34. Edbauer, D. et al. Reconstitution of γ-secretase activity. Nat. Cell Biol. 5, 486–488 (2003).

    Article  CAS  Google Scholar 

  35. Yang, L.B. et al. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med. 9, 3–4 (2003).

    Article  CAS  Google Scholar 

  36. Trapp, B.D., Nishiyama, A., Cheng, D. & Macklin, W. Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J. Cell Biol. 137, 459–468 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.R. Mathews and E. Lund for assistance in sample sequencing by MALDI-TOF mass spectroscopy; J. Blaesdale, G. Gill and Q. Shi for discussions; G. Kidd for help with confocal microscopy; and B. Trapp for support and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riqiang Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tissue distribution of RTN3/Nogo proteins (PDF 66 kb)

Supplementary Fig. 2

Transfected RTN3 does not affect Aβ ratios. (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Lu, Y., Qahwash, I. et al. Reticulon family members modulate BACE1 activity and amyloid-β peptide generation. Nat Med 10, 959–965 (2004). https://doi.org/10.1038/nm1088

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing