Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA–based immunization by in vivo transfection of dendritic cells

Abstract

Delivery of antigen in a manner that induces effective, antigen–specific immunity is a critical challenge in vaccine design. Optimal antigen presentation is mediated by professional antigen–presenting cells (APCs) capable of taking up, processing and presenting antigen to T cells in the context of costimulatory signals required for T–cell activation. Developing immunization strategies to optimize antigen presentation by dendritic cells, the most potent APCs, is a rational approach to vaccine design. Here we show that cutaneous genetic immunization with naked DNA results in potent, antigen–specific, cytotoxic T lymphocyte–mediated protective tumor immunity. This method of immunization results in the transfection of skin–derived dendritic cells, which localize in the draining lymph nodes. These observations provide a basis for further development of DNA–based vaccines and demonstrate the feasibility of genetically engineering dendritic cells in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Doherty, P.C., Knowles, B.B. & Wettstein, P.J. Immunological surveillance of tumours in the context of major histocompatability restriction of T-cell function. Adv. Cancer Res. 42, 1–65 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Yewdell, J.W. & Bennink, J.R. Cell biology of antigen processing and presentation to MHC class I molecule restricted T-lymphocytes. Adv. Immunol. 52, 1–42 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Tang, D.C., DeVit, M. & Johnston, S.A. Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152–154 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1992).

    Article  Google Scholar 

  5. Williams, R.S. et al. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Natl. Acad. Sci. USA 88, 2726–2730 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fynan, E.F. et al. DNA vaccines: Protective immunization by parenteral, mucosal, and gene gun inoculation. Proc. Natl. Acad. Sci. USA 90, 11478–11482 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donnelly, J.J. et al. Preclinical efficacy of a prototype DNA vaccine: Enhanced protection against antigenic drift in influenza virus. Nature Med. 1, 583–587 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Conroy, R.M. et al. A carcinoembryonic antigen polynucleotide vaccine has in vivo anti-tumour activity. Gene Ther. 2, 59–62 (1995).

    Google Scholar 

  9. Krishnan, S., Haensler, J. & Meulien, P. Paving the way towards DNA vaccines. Nature Med. 1, 521–522 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Pardoll, D.M. & Beckerleg, A.M. Exposing the immunology of naked DNA vaccines. Immunity 3, 165–169 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Kovacsovics-Bankowski, M. & Rock, K.L. A phagosome to cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Falo, L.D. Jr., Kovacsovics-Bankowski, M., Thompson, K. & Rock, K.L. Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nature Med. 1, 649–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Suto, R. & Sirvastava, P.K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269, 1585–1588 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Wolff, J.A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Eisenbraun, M.D., Fuller, D.H. & Haynes, J.R. Examination of parameters effecting the elicitation of humoral immune responses by particle bombardment-mediated genetic immunization. DNA Cell Biol. 12, 791–797 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, N.-S. & Sun, W.H. Gene gun and other non-viral approaches for cancer gene therapy. Nature Med. 1, 481–483 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Fidler, I.J., Gersten, D.M. & Budmen, M.B. Characteristics in vivo and in vitro of tumour cells selected for resistance to syngeneic lymphocyte-mediated cytotoxicity Cancer Res. 36, 3160–3165 (1976).

    CAS  PubMed  Google Scholar 

  18. Pan, Z.K., Ikonomidis, G., Lazenby, A., Pardoll, D. & Paterson, Y. A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nature Med. 1, 471–477 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, F., Rouse, B.T. & Huang, L. Prolonged survival of thymoma bearing mice after vaccination with a soluble protein antigen entrapped in liposomes: A model study. Cancer Res. 52, 6287–6291 (1992).

    CAS  PubMed  Google Scholar 

  20. Huang, A.Y.C. et al. Role of bone marrow derived cells in presenting MHC class I restricted tumour antigens. Science 264, 961–965 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Moore, M.W., Carbone, F.R. & Bevan, M.J. Introduction of soluble proteins into the class I pathway of antigen processing and presentation. Cell 54, 777–785 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Celluzzi, C.M., Mayordomo, J.I., Storkus, W.J., Lotze, M.T. & Falo, L.D. Jr. Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity. J. Exp. Med. 183, 283–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Van Wilsem, E.J.G., Breve, J., Kleijmeer, M. & Kraal, G. Langerhans cells in skin draining lymph nodes: Phenotype and kinetics of migration. J. Invest. Dermatol. 103, 217–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Macatonia, S.E., Knight, S.C., Edwards, A.J., Griffiths, S. & Fryer, P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate: Functional and morphological studies. J. Exp. Med. 166, 1654–1667 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Conroy, R.M. et al. Selected strategies to augment polynucleotide immunization. Gene Ther. 3, 67–74 (1996).

    Google Scholar 

  26. Ciernik, F.I., Brezofsky, J.A. & Carbone, D.P. Induction of cytotoxic T-lymphocytes and antitumor immunity with DNA vaccines expressing single T-cell epitopes. J. Immunol 156, 2369–2375 (1996).

    CAS  PubMed  Google Scholar 

  27. Irvine, K.R., Rao, J.B., Rosenberg, S.A. & Restifo, N.P. Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J. Immunol. 156, 238–245 (1996).

    CAS  PubMed  Google Scholar 

  28. Matsuno, K., Ezaki, T., Kudo, S. & Uehara, Y. A life stage of a particle-laden rat dendritic cell in vivo: Their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J. Exp. Med. 183, 1865–1878 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, Y.C.A., Bruce, A.T., Pardoll, D.M. & Levitsky, H.I. In vivo cross-priming of MHC class I restricted antigens requires the TAP transporter. Immunity 4, 349–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Porgador, A. & Gilboa, E. Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J. Exp. Med. 182, 255–258 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Porgador, A. & Gilboa, E. Induction of antitumor immunity using bone marrow generated dendritic cells. J. Immunol. 156, 2918–2926 (1996).

    CAS  PubMed  Google Scholar 

  32. Mayordomo, J.I. et al. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity. Nature Med. 1, 1297–1304 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. 2, 52–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Alijagic, S. et al. Dendritic cells generated from peripheral blood transfected with human tyrosinase induce specific T cell activation. Eur. J. Immunol. 25, 3100–3107 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Condon, C., Watkins, S., Celluzzi, C. et al. DNA–based immunization by in vivo transfection of dendritic cells. Nat Med 2, 1122–1128 (1996). https://doi.org/10.1038/nm1096-1122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1096-1122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing