Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A

Abstract

The involvement of immune mechanisms in tumor angiogenesis is unclear. Here we describe a new mechanism of tumor vasculogenesis mediated by dendritic cell (DC) precursors through the cooperation of β-defensins and vascular endothelial growth factor-A (Vegf-A). Expression of mouse β-defensin-29 recruited DC precursors to tumors and enhanced tumor vascularization and growth in the presence of increased Vegf-A expression. A new leukocyte population expressing DC and endothelial markers was uncovered in mouse and human ovarian carcinomas coexpressing Vegf-A and β-defensins. Tumor-infiltrating DCs migrated to tumor vessels and independently assembled neovasculature in vivo. Bone marrow–derived DCs underwent endothelial-like differentiation ex vivo, migrated to blood vessels and promoted the growth of tumors expressing high levels of Vegf-A. We show that β-defensins and Vegf-A cooperate to promote tumor vasculogenesis by carrying out distinct tasks: β-defensins chemoattract DC precursors through CCR6, whereas Vegf-A primarily induces their endothelial-like specialization and migration to vessels, which is mediated by Vegf receptor-2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defb29 and Vegfa cooperatively promote tumor growth.
Figure 2: Tumor-infiltrating DC precursors undergo endothelial-like specialization.
Figure 3: DC precursors can promote vasculogenesis or induce T cell responses.
Figure 4: Endothelial-like differentiation of DCs in vitro.
Figure 5: Defb29 and Vegf carry out different tasks.
Figure 6: β-defensins and vascular CD11c+ cells in human ovarian carcinoma.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  2. Bhardwaj, N. Processing and presentation of antigens by dendritic cells: implications for vaccines. Trends Mol. Med. 7, 388–394 (2001).

    Article  CAS  Google Scholar 

  3. Steinman, R.M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  Google Scholar 

  4. Gabrilovich, D.I., Nadaf, S., Corak, J., Berzofsky, J.A. & Carbone, D.P. Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell. Immunol. 170, 111–119 (1996).

    Article  CAS  Google Scholar 

  5. Ronchetti, A. et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines. J. Immunol. 163, 130–136 (1999).

    CAS  PubMed  Google Scholar 

  6. Chiodoni, C. et al. Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J. Exp. Med. 190, 125–133 (1999).

    Article  CAS  Google Scholar 

  7. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  Google Scholar 

  8. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    CAS  PubMed  Google Scholar 

  9. Gabrilovich, D.I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  Google Scholar 

  10. Vicari, A.P., Caux, C. & Trinchieri, G. Tumour escape from immune surveillance through dendritic cell inactivation. Semin. Cancer Biol. 12, 33–42 (2002).

    Article  CAS  Google Scholar 

  11. Ohm, J.E. & Carbone, D.P. Vegf as a mediator of tumor-associated immunodeficiency. Immunol. Res. 23, 263–272 (2001).

    Article  CAS  Google Scholar 

  12. Zhang, L. et al. Intratumoral T cells, recurrence and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 201–211 (2003).

    Article  Google Scholar 

  13. Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  Google Scholar 

  14. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  Google Scholar 

  15. De Palma, M., Venneri, M.A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    Article  CAS  Google Scholar 

  16. Roby, K.F. et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21, 585–591 (2000).

    Article  CAS  Google Scholar 

  17. Zhang, L. et al. Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am. J. Pathol. 161, 2295–2309 (2002).

    Article  CAS  Google Scholar 

  18. Biragyn, A. et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167, 6644–6653 (2001).

    Article  CAS  Google Scholar 

  19. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  Google Scholar 

  20. Duncan, G.S. et al. Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J. Immunol. 162, 3022–3030 (1999).

    CAS  PubMed  Google Scholar 

  21. Vicari, A.P. et al. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J. Exp. Med. 196, 541–549 (2002).

    Article  CAS  Google Scholar 

  22. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  23. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  24. Sumpio, B.E., Riley, J.T. & Dardik, A. Cells in focus: endothelial cell. Int. J. Biochem. Cell Biol. 34, 1508–1512 (2002).

    Article  CAS  Google Scholar 

  25. Fend, F. et al. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis. Am. J. Pathol. 154, 61–66 (1999).

    Article  CAS  Google Scholar 

  26. Ardavin, C. et al. Origin and differentiation of dendritic cells. Trends Immunol. 22, 691–700 (2001).

    Article  CAS  Google Scholar 

  27. Mendel, D.B. et al. Development of SU5416, a selective small molecule inhibitor of Vegf receptor tyrosine kinase activity, as an anti-angiogenesis agent. Anticancer Drug Des. 15, 29–41 (2000).

    CAS  PubMed  Google Scholar 

  28. Wu, Z. et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc. Natl. Acad. Sci. USA 100, 8880–8885 (2003).

    Article  CAS  Google Scholar 

  29. Zhao, Y., Glesne, D. & Huberman, E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc. Natl. Acad. Sci. USA 100, 2426–2431 (2003).

    Article  CAS  Google Scholar 

  30. Nakul-Aquaronne, D., Bayle, J. & Frelin, C. Coexpression of endothelial markers and CD14 by cytokine mobilized CD34+ cells under angiogenic stimulation. Cardiovasc. Res. 57, 816–823 (2003).

    Article  CAS  Google Scholar 

  31. Fernandez Pujol, B. et al. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur. J. Cell Biol. 80, 99–110 (2001).

    Article  CAS  Google Scholar 

  32. Schmeisser, A. et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc. Res. 49, 671–680 (2001).

    Article  CAS  Google Scholar 

  33. Rehman, J., Li, J., Orschell, C.M. & March, K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).

    Article  Google Scholar 

  34. Harraz, M., Jiao, C., Hanlon, H.D., Hartley, R.S. & Schatteman, G.C. CD34 blood-derived human endothelial cell progenitors. Stem Cells 19, 304–312 (2001).

    Article  CAS  Google Scholar 

  35. Langeggen, H., Berge, K.E., Johnson, E. & Hetland, G. Human umbilical vein endothelial cells express complement receptor 1 (CD35) and complement receptor 4 (CD11c/CD18) in vitro. Inflammation 26, 103–110 (2002).

    Article  CAS  Google Scholar 

  36. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34+cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  Google Scholar 

  37. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  Google Scholar 

  38. Nowicki, A. et al. Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int. J. Cancer 65, 112–119 (1996).

    Article  CAS  Google Scholar 

  39. Pipp, F. et al. VEGFR-1-selective Vegf homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92, 378–385 (2003).

    Article  CAS  Google Scholar 

  40. Moldovan, N.I., Goldschmidt-Clermont, P.J., Parker-Thornburg, J., Shapiro, S.D. & Kolattukudy, P.E. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87, 378–384 (2000).

    Article  CAS  Google Scholar 

  41. Schmeisser, A., Graffy, C., Daniel, W.G. & Strasser, R.H. Phenotypic overlap between monocytes and vascular endothelial cells. Adv. Exp. Med. Biol. 522, 59–74 (2003).

    Article  CAS  Google Scholar 

  42. Havemann, K., Pujol, B.F. & Adamkiewicz, J. In vitro transformation of monocytes and dendritic cells into endothelial like cells. Adv. Exp. Med. Biol. 522, 47–57 (2003).

    Article  CAS  Google Scholar 

  43. Schutte, B.C. et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. USA 99, 2129–2133 (2002).

    Article  CAS  Google Scholar 

  44. Miller, A.D. & Rosman, G.J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–982, 984–986, 989–990 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. H. June and C. B. Thompson for critical review of the manuscript and helpful discussions; S. M. Albelda for the CD31 knock-out mice; P. Terranova for the mouse ID8 cell line; A. D. Miller for the retroviral vector pLXSN; P. D'Amore for the Vegf164 cDNA; and J. M. Palacios for the pCEFL-KZ-HA vector. This work was supported by National Cancer Institute ovarian SPORE P01-CA83638; National Institute of Health R01 CA098951; and grants from the Sidney Kimmel Foundation and the Ovarian Cancer Research Fund, as well as institutional funding by the Abramson Family Cancer Research Institute and the Department of Obstetrics and Gynecology at the University of Pennsylvania. The LCM facility was supported by a generous grant by the Fannie Rippel Foundation. F.B. and M.C.C. were supported by National Institutes of Health Research Grant #D43 TW00671 funded by the Fogarty International Center. F.B. is a member of the Consejo Nacional de Investigaciones Cientificas Argentinas. D.K. was supported by Associazione Italiana per la Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Coukos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Further characterization of β-defensin-29 and CD11c+ cells in tumors. (PDF 107 kb)

Supplementary Fig. 2

Bone marrow-derived DCs undergo endothelial specialization in vitro. (PDF 274 kb)

Supplementary Fig. 3

Morphological and molecular characterization of vascular differentiation of immature DCs in vitro. (PDF 94 kb)

Supplementary Fig. 4

DC precursors in human and mouse tumors. (PDF 115 kb)

Supplementary Note (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conejo-Garcia, J., Benencia, F., Courreges, MC. et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10, 950–958 (2004). https://doi.org/10.1038/nm1097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing