Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate and acquired immunity in atherogenesis

Traditional risk factors like hypercholesterolemia are important for atherogenesis, but it is now apparent that the immune system also plays an important role. Uncovering the mechanisms by which specific components of the immune system impact atherogenesis will not only provide new insights into the pathogenesis of lesion formation, but could also lead to novel therapeutic approaches that involve immune modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship of CRP to HDL cholesterol concentrations, demonstrating that CRP is an independent risk factor for CVD (from ref. 8).
Figure 2: Fatty streaks of human coronary arteries and aortae from animal models of atherosclerosis immunostained for macrophages (top), oxidation-specific epitopes (middle) or T cells (bottom).
Figure 3: Molecular mimicry between epitopes of oxLDL, apoptotic cells and the PC of the C-PS of pathogens.

D. Maizels

References

  1. Tuzcu, E.M. et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: Evidence from intravascular ultrasound. Circulation 103, 2705–2710 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Leitersdorf, E., Tobin, E.J., Davignon, J. & Hobbs, H.H. Common low-density lipoprotein receptor mutations in the French Canadian population. J. Clin. Invest. 85, 1014–1023 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glass, C.K. & Witztum, J.L. Atherosclerosis: The road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hansson, G.K., Libby, P., Schonbeck, U. & Yan, Z.Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ. Res. 91, 281–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hansson, G.K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 1876–1890 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hörkkö, S. et al. Immunological responses to oxidized LDL. Free Radic. Biol. Med. 28, 1771–1779 (2000).

    Article  PubMed  Google Scholar 

  7. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Libby, P., Ridker, P.M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Williams, K.J. & Tabas, I. The response-to-retention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol. 9, 471–474 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Gaut, J.P. & Heinecke, J.W. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc. Med. 11, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Pratico, D. Lipid peroxidation in mouse models of atherosclerosis. Trends Cardiovasc. Med. 11, 112–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Colles, S.M., Maxson, J.M., Carlson, S.G. & Chisolm, G.M. Oxidized LDL-induced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc. Med. 11, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Berliner, J.A., Subbanagounder, G., Leitinger, N., Watson, A.D. & Vora, D. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med. 11, 142–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Marathe, G.K., Prescott, S.M., Zimmerman, G.A. & McIntyre, T.M. Oxidized LDL contains inflammatory PAF-like phospholipids. Trends Cardiovasc. Med. 11, 139–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Witztum, J.L. & Steinberg, D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc. Med. 11, 93–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, H. et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Febbraio, M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest. 105, 1049–1056 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Libby, P., Egan, D. & Skarlatos, S. Roles of infectious agents in atherosclerosis and restenosis: An assessment of the evidence and need for future research. Circulation 96, 4095–4103 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Landmesser, U. & Harrison, D.G. Oxidant stress as a marker for cardiovascular events—Ox marks the spot. Circulation 104, 2638–2640 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Dansky, H.M., Charlton, S.A., Harper, M.M. & Smith, J.D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl. Acad. Sci. USA 94, 4642–4646 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daugherty, A. et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J. Clin. Invest. 100, 1575–1580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, L., Leung, C. & Schindler, C. Lymphocytes are important in early atherosclerosis. J. Clin. Invest. 108, 251–259 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reardon, C.A. et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21, 1011–1016 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, X., Nicoletti, A., Elhage, R. & Hansson, G.K. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102, 2919–2922 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Palinski, W., Miller, E. & Witztum, J.L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl. Acad. Sci. USA 92, 821–825 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol. 16, 1074–1079 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Freigang, S., Hörkkö, S., Miller, E., Witztum, J.L. & Palinski, W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol. 18, 1972–1982 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138, 147–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A.K. & Hansson, G.K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 108–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Nicoletti, A., Kaveri, S., Caligiuri, G., Bariaety, J. & Hansson, G.K. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J. Clin. Invest. 102, 910–918 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Medzhitov, R. & Janeway, C.A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  34. Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103, 773–778 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Smith, J.D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl. Acad. Sci. USA 92, 8264–8268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cybulsky, M.I. & Gimbrone, M.A., Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788–791 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Witztum, J.L. & Berliner, J.A. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr. Opin. Lipidol. 9, 441–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Edfeldt, K., Swedenborg, J., Hansson, G.K. & Yan, Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation 105, 1158–1161 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Wright, S.D. et al. Infectious agents are not necessary for murine atherogenesis. J. Exp. Med. 191, 1437–1442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hubacek, J.A. et al. C(−260)→T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation 99, 3218–3220 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Li, A.C. & Glass, C.K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 8, 1235–1242 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Vlaicu, R., Niculescu, F., Rus, H.G. & Cristea, A. Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis 57, 163–177 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Buono, C. et al. Influence of C3 deficiency on atherosclerosis. Circulation 105, 3025–3031 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Volanakis, J.E. Human C-reactive protein: Expression, structure, and function. Mol. Immunol. 38, 189–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Yasojima, K., Schwab, C., McGeer, E.G. & McGeer, P.L. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 158, 1039–1051 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shaw, P.X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vos, Q., Lees, A., Wu, Z.Q., Snapper, C.M. & Mond, J.J. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev. 176, 154–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Ochsenbein, A.F. et al. Correlation of T cell independence of antibody responses with antigen dose reaching secondary lymphoid organs: Implications for splenectomized patients and vaccine design. J. Immunol. 164, 6296–6302 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Millonig, G., Schwentner, C., Mueller, P., Mayerl, C. & Wick, G. The vascular-associated lymphoid tissue: A new site of local immunity. Curr. Opin. Lipidol. 12, 547–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Schiller, N.K., Boisvert, W.A. & Curtiss, L.K. Lesion formation in LDL receptor–deficient mice with perforin and Lystbeige mutations. Arterioscler. Thromb. Vasc. Biol. 22, 1341–1346 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Sohma, Y. et al. Accumulation of plasma cells in atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits. Proc. Natl. Acad. Sci. USA 92, 4937–4941 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, X. & Hansson, G.K. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol. 50, 25–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Mach, F. et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40-CD40 ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA 94, 1931–1936 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lutgens, E. et al. Requirement for CD154 in the progression of atherosclerosis. Nature Med. 5, 1313–1316 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Mach, F., Schönbeck, U., Sukhova, G.K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394, 200–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Schönbeck, U., Sukhova, G.K., Shimizu, K., Mach, F. & Libby, P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 97, 7458–7463 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lutgens, E. et al. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc. Natl. Acad. Sci. USA 97, 7464–7469 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Uyemura, K. et al. Cross-regulatory roles of interleukin (IL)-12 and IL-10 in atherosclerosis. J. Clin. Invest. 97, 2130–2138 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerdes, N. et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for atherogenesis. J. Exp. Med. 195, 245–257 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gupta, S. et al. IFN-γ potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Whitman, S.C., Ravisankar, P., Elam, H. & Daugherty, A. Exogenous interferon-γ enhances atherosclerosis in apolipoprotein E−/− mice. Am. J. Pathol. 157, 1819–1824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, T.S., Yen, H.C., Pan, C.C. & Chau, L.Y. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 19, 734–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Whitman, S.C., Ravisankar, P. & Daugherty, A. Interleukin-18 enhances atherosclerosis in apolipoprotein E−/− mice through release of interferon-γ. Circ. Res. 90, E34–E38 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Pinderski, L.J. et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res. 90, 1064–1071 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Laurat, E. et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104, 197–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Huber, S.A., Sakkinen, P., David, C., Newell, M.K. & Tracy, R.P. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 103, 2610–2616 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. King, V.L., Szilvassy S.J. & Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 22, 456–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Mallat, Z. et al. Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res. 89, 930–934 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Lutgens, E. et al. Transforming growth factor-β mediates balance between inflammation and fibrosis during plaque progression. Arterioscler. Thromb. Vasc. Biol. 22, 975–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G.K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 109, 745–753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Witztum, J.L. Splenic immunity and atherosclerosis: A glimpse into a novel paradigm? J. Clin. Invest. 109, 721–724 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robinette, C.D. & Fraumeni, J.F., Jr. Splenectomy and subsequent mortality in veterans of the 1939–45 war. Lancet 2, 127–129 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Paulsson, G., Zhou, X., Tornquist, E. & Hansson, G.K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. George, J. et al. Adoptive transfer of β2-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation 102, 1822–1827 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Beck, J.D., Pankow, J., Tyroler, H.A. & Offenbacher, S. Dental infections and atherosclerosis. Am. Heart J. 138, S528–S533 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Wick, G., Perschinka, H. & Millonig, G. Atherosclerosis as an autoimmune disease: An update. Trends Immunol. 22, 665–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Mayr, M., Kiechl, S., Willeit, J., Wick, G. & Xu, Q. Infections, immunity, and atherosclerosis: Associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102, 833–839 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Afek, A. et al. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J. Autoimmun. 14, 115–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Palinski, W. & Witztum, J.L. Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J. Intern. Med. 247, 371–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Gillotte, K.L., Hörkkö, S., Witztum, J.L. & Steinberg, D. Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J. Lipid Res. 41, 824–833 (2000).

    CAS  PubMed  Google Scholar 

  84. Friedman, P., Hörkkö, S., Steinberg, D., Witztum, J.L. & Dennis, E.A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol concentration. J. Biol. Chem. 277, 7010–7020 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Ylä-Herttuala, S. et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb. 14, 32–40 (1994).

    Article  PubMed  Google Scholar 

  86. Cyrus, T. et al. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation 103, 2277–2282 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Tsimikas, S., Palinski, W. & Witztum, J.L. Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21, 95–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest. 98, 800–814 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hörkkö, S. et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J. Clin. Invest. 103, 117–128 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gillotte-Taylor, K., Boullier, A., Witztum, J.L., Steinberg, D. & Quehenberger, O. Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. J. Lipid Res. 42, 1474–1482 (2001).

    CAS  PubMed  Google Scholar 

  92. Boullier, A. et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem. 275, 9163–9169 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Podrez, E.A. et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem. 277, 38503–38516 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Podrez, E.A. et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J. Biol. Chem. 277, 38517–38523 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Chang, M.K. et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: Evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl. Acad. Sci. USA 96, 6353–6358 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Briles, D.E., Forman, C., Hudak, S. & Claflin, J.L. Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J. Exp. Med. 156, 1177–1185 (1982).

    Article  CAS  PubMed  Google Scholar 

  97. Gershov, D., Kim, S., Brot, N. & Elkon, K.B. C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: Implications for systemic autoimmunity. J. Exp. Med. 192, 1353–1364 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang, M.K., Binder, C.J., Torzewski, M. & Witztum, J.L. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc. Natl. Acad. Sci. USA 99, 13043–13048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Witztum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, C., Chang, MK., Shaw, P. et al. Innate and acquired immunity in atherogenesis. Nat Med 8, 1218–1226 (2002). https://doi.org/10.1038/nm1102-1218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1102-1218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing