Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene

An Erratum to this article was published on 01 February 2005

Abstract

Respiratory syncytial virus (RSV) infection is one of the major causes of respiratory tract infection for which no vaccine or antiviral treatment is available. The RSV NS1 protein seems to antagonize the host interferon (IFN) response; however, its mechanism is unknown. Here, we used a plasmid-borne small interfering RNA targeting the NS1 gene (siNS1) to examine the role of NS1 in modulating RSV infection. RSV replication was reduced in A549 cells, but not IFN–deficient Vero cells, transfected with siNS1. siNS1 induced upregulated expression of IFN-β and IFN-inducible genes in A549 cells. siNS1-transfected human dendritic cells, upon RSV infection, produced elevated type-1 IFN and induced differentiation of naive CD4+ T cells to T helper type 1 (TH1) cells. Mice treated intranasally with siNS1 nanoparticles before or after infection with RSV showed substantially decreased virus titers in the lung and decreased inflammation and airway reactivity compared to controls. Thus, siNS1 nanoparticles may provide an effective inhibition of RSV infection in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: siNS1 inhibits rgRSV infection.
Figure 2: siNS1-mediated attenuation of RSV infection involves upregulated expression of IFN-β and IFN-inducible genes in infected A549 cells.
Figure 3: Effect of siNS1 on human DCs and naive CD4+ T cells.
Figure 4: siNS1 exhibits antiviral activity in vivo.
Figure 5: Prophylactic and therapeutic potential of NG042-siNS1.

Similar content being viewed by others

References

  1. Sigurs, N., Bjarnason, R., Sigurbergsson, F. & Kjellman, B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med. 161, 1501–1507 (2000).

    Article  CAS  Google Scholar 

  2. Sigurs, N., Bjarnason, R., Sigurbergsson, F., Kjellman, B. & Bjorksten, B. Asthma and immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis: a prospective cohort study with matched controls. Pediatrics 95, 500–505 (1995).

    CAS  PubMed  Google Scholar 

  3. Shay, D.K. et al. Bronchiolitis-associated hospitalizations among US children, 1980-1996. JAMA 282, 1440–1446 (1999).

    Article  CAS  Google Scholar 

  4. Hall, C.B., Long, C.E. & Schnabel, K.C. Respiratory syncytial virus infections in previously healthy working adults. Clin. Infect. Dis. 33, 792–796 (2001).

    Article  CAS  Google Scholar 

  5. Thompson, W.W. et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179–186 (2003).

    Article  Google Scholar 

  6. Sly, P.D. & Hibbert, M.E. Childhood asthma following hospitalization with acute viral bronchiolitis in infancy. Pediatr. Pulmonol. 7, 153–158 (1989).

    Article  CAS  Google Scholar 

  7. Brandenburg, A.H., Neijens, H.J. & Osterhaus, A.D. Pathogenesis of RSV lower respiratory tract infection: implications for vaccine development. Vaccine 19, 2769–2782 (2001).

    Article  CAS  Google Scholar 

  8. Coffin, S.E. & Offit, P.A. New vaccines against mucosal pathogens: rotavirus and respiratory syncytial virus. Adv. Pediatr. Infect. Dis. 13, 333–348 (1997).

    CAS  PubMed  Google Scholar 

  9. Handforth, J., Friedland, J.S. & Sharland, M. Basic epidemiology and immunopathology of RSV in children. Paediatr. Respir. Rev. 1, 210–214 (2000).

    CAS  PubMed  Google Scholar 

  10. Welliver, R.C. Review of epidemiology and clinical risk factors for severe respiratory syncytial virus (RSV) infection. J. Pediatr. 143, S112–S117 (2003).

  11. Collins, P.L., Chanock, R.M. & Murphy, B.R. in Fields Virology Vol. 1, 4th edn (eds. Knipe, D.M., Howley, P.M. & Griffin, D.E.), 1443–1485 (Lippincott-Raven, Philadelphia, 2001).

    Google Scholar 

  12. Jin, H. et al. Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo. Virology 273, 210–208 (2000).

    Article  CAS  Google Scholar 

  13. Teng, M. N, & Collins, P.L. Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. J. Virol. 73, 466–473 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Teng, M.N. et al. Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees. J. Virol. 74, 9317–9321 (2000).

    Article  CAS  Google Scholar 

  15. Murphy, B.R & Collins, P.L. Live-attenuated virus vaccines for respiratory syncytial and parainfluenza viruses: applications of reverse genetics. J. Clin. Invest. 110, 21-27 (2002).

  16. Hall, C.B., Walsh, E.E., Long, C.E. & Schnabel, K.C. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis. 163, 693–698 (1991).

    Article  CAS  Google Scholar 

  17. Roman, M. et al. Respiratory syncytial virus infection in infants is associated with predominant TH2-like response. Am. J. Respir. Crit. Care Med. 156, 190–195 (1997).

    Article  CAS  Google Scholar 

  18. Matsuse, H. et al. Recurrent respiratory syncytial virus infections in allergen-sensitized mice lead to persistent airway inflammation and hyperresponsiveness. J. Immunol. 164, 6583–6592 (2000).

    Article  CAS  Google Scholar 

  19. Behera, A.K., Kumar, M., Lockey, R.F. & Mohapatra, S.S. Adenovirus-mediated interferon gamma gene therapy for allergic asthma: involvement of interleukin 12 and STAT4 signaling. Hum. Gene Ther. 13, 1697–1709 (2002).

    Article  CAS  Google Scholar 

  20. Kumar, M., Behera, A.K., Matsuse, H., Lockey, R.F. & Mohapatra, S.S. Intranasal IFN-γ gene transfer protects BALB/c mice against respiratory syncytial virus infection. Vaccine 18, 558–567 (1999).

    Article  CAS  Google Scholar 

  21. Kumar, M. et al. Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/C mice against acute respiratory syncytial virus infection. Hum. Gene Ther. 13, 1415–1425 (2002).

    Article  CAS  Google Scholar 

  22. Kumar, M. et al. Chitosan IFN-g-pDNA nanoparticle (CIN) therapy for allergic asthma. Genetic Vaccines and Ther. 1, 3–12 (2003).

    Article  Google Scholar 

  23. Mohapatra, SS. Mucosal gene expression vaccine: a novel a vaccine strategy for respiratory syncytial virus. Pediatr. Infect. Dis J. 22, S100–S103 (2003).

  24. Hellermann, G., Mohapatra, SS. Genetic Therapy: on the brink of a newfuture. Genetic Vaccines and Ther. 1, 1–3 (2003).

    Article  Google Scholar 

  25. Bossert, B. & Conzelmann, K.K. Respiratory syncytial virus (RSV) nonstructural (NS) proteins as host range determinants: a chimeric bovine RSV with NS genes from human RSV is attenuated in interferon-competent bovine cells. J. Virol. 76, 4287–4293 (2002).

    Article  CAS  Google Scholar 

  26. Bossert, B., Marozin, S, & Conzelmann, K.K. Nonstructural proteins NS1 and NS2 of bovine respiratory syncytial virus block activation of interferon regulatory factor 3. J. Virol. 77, 8661–8668 (2003).

    Article  CAS  Google Scholar 

  27. Schlender, J., Bossert, B., Buchholz, U & Conzelmann, K.K. Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize α/β interferon-induced antiviral response. J. Virol. 74, 8234–8242 (2000).

    Article  CAS  Google Scholar 

  28. Spann, K.M., Tran, K.C., Chi, B., Rabin, R.L. & Collins, P.L. Suppression of the induction of α, β, and γ interferons by the NS1 and NS2 proteins of human respiratory syncytial virus in human epithelial cells and macrophages. J. Virol. 78, 4363–4369 (2004).

    Article  CAS  Google Scholar 

  29. Fire, A. RNA-triggered gene silencing. Trends Genet. 15, 358–363 (1999).

    Article  CAS  Google Scholar 

  30. Zhang, W., Singam, R., Hellermann, G., Kong, X., San Juan, H., Lockey, R.F., Wu, S.J., Porter, K., Mohapatra, S.S. Attenuation of dengue virus infection by adeno- associated virus-mediated siRNA delivery. Genetic Vaccines Ther. 2, 8–12 (2004).

    Article  Google Scholar 

  31. Hallak, L.K., Collins, P.L., Knudson, W. & Peeples, M.E. Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271, 264–275 (2000).

    Article  CAS  Google Scholar 

  32. Mosca, J.D. & Pitha, P.M. Transcriptional and posttranscriptional regulation of exogenous human β interferon gene in simian cells defective in interferon synthesis. Mol. Cell. Biol. 6, 2279–2283 (1986).

    Article  CAS  Google Scholar 

  33. Leaman, D.W. et al. Targeted therapy of respiratory syncytial virus in African green monkeys by intranasally administered 2-5A antisense. Virology 292, 70–77 (2002).

    Article  CAS  Google Scholar 

  34. Fisher, T.L., Terhorst, T., Cao, X. & Wagner, R.W. Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. 21, 3857–3865 (1993)

    Article  CAS  Google Scholar 

  35. Kole, R. & Sazani, P. Antisense effects in the cell nucleus: modification of splicing. Curr. Opin. Mol. Ther. 3, 229–234 (2001).

    CAS  PubMed  Google Scholar 

  36. Billy, E., Brondani, V., Zhang, H., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 98, 14428–14433 (2001).

    Article  CAS  Google Scholar 

  37. Arnold, R., Humbert, B., Werchau, H., Gallati, H. & Konig, W. Interleukin-8, interleukin-6, and soluble tumor necrosis factor receptor type-I release from a human pulmonary epithelial cell line (A549) exposed to respiratory syncytial virus. Immunology 82, 126–133 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Atreya, P.L., Peeples, M.E. & Collins, P.L. The NS1 protein of human respiratory syncytial virus is a potent inhibitor of minigenome transcription and RNA replication. J. Virol. 72, 1452–1461 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  40. Barnes, B., Lubyova, B. & Pitha, P.M. On the role of IRF in host defense. J. Interferon Cytokine Res. 22, 59–71 (2002).

    Article  CAS  Google Scholar 

  41. Harada, H. et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 58, 729–739 (1989).

    Article  CAS  Google Scholar 

  42. Pine, R., Decker, T., Kessler, D.S., Levy, D.E. & Darnell, JE Jr. Purification and cloning of interferon-stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of both beta interferon- and interferon-stimulated genes but is not a primary transcriptional activator of either. Mol. Cell. Biol. 10, 2448–2457 (1990).

    Article  CAS  Google Scholar 

  43. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  Google Scholar 

  44. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    Article  CAS  Google Scholar 

  45. Sato, Y. et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273, 352–354 (1996).

    Article  CAS  Google Scholar 

  46. Pebernard, S. & Iggo, R.D. Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72, 103–111 (2004).

    Article  CAS  Google Scholar 

  47. Bont, L., Kavelaars, A., Heijnen, C.J., van Vught, A.J. & Kimpen, J.L. Monocyte interleukin-12 production is inversely related to duration of respiratory failure in respiratory syncytial virus bronchiolitis. J. Infect. Dis. 181, 1772–1775 (2000).

    Article  CAS  Google Scholar 

  48. Bartz, H. et al. Respiratory syncytial virus decreases the capacity of myeloid dendritic cells to induce interferon-gamma in naive T cells. Immunology 109, 49–57 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.E. Peeples (Columbus Children's Research Institute, Ohio) for his rgRSV stock, O. Haller (Freiburg University, Germany) for his gift of MxA antibody, Saneron-Cell Therapeutics (Tampa, Florida) for the cord blood cells and Moffitt Flow Cytometry and Microarray Core for their assistance. SSM is supported by the grants from the Veterans' Affairs Merit Review Award and US National Institutes of Health #5RO1HL71101-01A2. The support from the Joy McCann Culverhouse Endowment to the Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, and the Veterans' Affairs Hospital is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S Mohapatra.

Ethics declarations

Competing interests

Weidong Zhang and Shyam S. Mohapatra have filed a patent application relating to siNS1. Shyam S. Mohapatra is a scientific founder and advisor to Transgenex Nanobiotech Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Yang, H., Kong, X. et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med 11, 56–62 (2005). https://doi.org/10.1038/nm1174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing