Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of NKT cell development by SAP, the protein defective in XLP

Abstract

The adaptor molecule SAP is expressed in T lymphocytes and natural killer (NK) cells, where it regulates cytokine production and cytotoxicity1,2,3. Here, we show that SAP, encoded by the SH2D1A gene locus, also has a crucial role during the development of NKT cells, a lymphocyte subset with immunoregulatory functions in response to infection, cancer and autoimmune disease4. Following stimulation with the NKT cell–specific agonist α-galactosyl ceramide (αGC), Sh2d1a−/− splenocytes did not produce cytokines or activate other lymphoid lineages in an NKT cell–dependent manner. While evaluating the abnormalities in αGC-induced immune responses, we observed that Sh2d1a−/− animals lacked NKT cells in the thymus and peripheral organs. The defect in NKT cell ontogeny was hematopoietic cell autonomous and could be rescued by reconstitution of SAP expression within Sh2d1a−/− bone marrow cells. Seventeen individuals with X-linked lymphoproliferative disease (XLP), who harbored germline mutations in SH2D1A, also lacked NKT cells. Furthermore, a female XLP carrier showed completely skewed X chromosome inactivation within NKT cells, but not T or B cells. Thus, SAP is a crucial regulator of NKT cell ontogeny in humans and in mice. The absence of NKT cells may contribute to the phenotypes of SAP deficiency, including abnormal antiviral and antitumor immunity and hypogammaglobulinemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absence of αGC induced immune cell activation in Sh2d1a−/− mice.
Figure 2: Sh2d1a−/− mice lack NKT cells.
Figure 3: The defect in NKT cell ontogeny is hematopoietic cell-autonomous and rescued by expression of wild-type SAP.
Figure 4: XLP patients have reduced NKT cells and a female XLP carrier shows skewed X chromosome inactivation in NKT cells.

Similar content being viewed by others

References

  1. Latour, S. & Veillette, A. Molecular and immunological basis of X-linked lymphoproliferative disease. Immunol. Rev. 192, 212–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Sharifi, R. et al. SAP mediates specific cytotoxic T-cell functions in X-linked lymphoproliferative disease. Blood 103, 3821–3827 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Cannons, J.L. et al. SAP regulates TH2 differentiation and PKC-θ-mediated activation of NF-κB1. Immunity 21, 693–706 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Coffey, A.J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet. 20, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Nichols, K.E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl. Acad. Sci. USA 95, 13765–13770 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Schuster, V. & Kreth, H.W. X-linked lymphoproliferative disease is caused by deficiency of a novel SH2 domain-containing signal transduction adaptor protein. Immunol. Rev. 178, 21–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, C. et al. SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat. Immunol. 2, 410–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Czar, M.J. et al. Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc. Natl. Acad. Sci. USA 98, 7449–7454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malbran, A. et al. Loss of circulating CD27+ memory B cells and CCR4+ T cells occurring in association with elevated EBV loads in XLP patients surviving primary EBV infection. Blood 103, 1625–1631 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Yin, L. et al. Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gamma-herpesvirus-68 and hypogammaglobulinemia. J. Med. Virol. 71, 446–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hron, J.D., Caplan, L., Gerth, A.J., Schwartzberg, P.L. & Peng, S.L. SH2D1A regulates T-dependent humoral autoimmunity. J. Exp. Med. 200, 261–266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crotty, S., Kersh, E.N., Cannons, J., Schwartzberg, P.L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature 421, 282–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Purtilo, D.T. et al. X-linked recessive progressive combined variable immunodeficiency (Duncan's disease). Lancet 1, 935–941 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Seemayer, T.A. et al. X-linked Lymphoproliferative Disease. in Infectious Causes of Cancer, Targets for Intervention (ed. Goedert, J.J.) 51–61 (Humana Press, Totowa, 2000).

    Chapter  Google Scholar 

  17. Latour, S. et al. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signaling in immune regulation. Nat. Cell. Biol. 5, 149–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Gadue, P., Morton, N. & Stein, P.L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190, 1189–1196 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eberl, G., Lowin-Kropf, B. & MacDonald, H.R. Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice. J. Immunol. 163, 4091–4094 (1999).

    CAS  PubMed  Google Scholar 

  20. Carnaud, C. et al. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  21. Chen, Y.H., Chiu, N.M., Mandal, M., Wang, N. & Wang, C.R. Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 6, 459–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Mendiratta, S.K. et al. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6, 469–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Smiley, S.T., Kaplan, M.H. & Grusby, M.J. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275, 977–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Wengler, G.S. et al. A PCR-based non-radioactive X-chromosome inactivation assay for genetic counseling in X-linked primary immunodeficiencies. Life Sci. 61, 1405–1411 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, N. et al. The cell surface receptor SLAM controls T cell and macrophage functions. J. Exp. Med. 199, 1255–1264 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roberts, T.J., Lin, Y., Spence, P.M., Van Kaer, L. & Brutkiewicz, R.R. CD1d1-dependent control of the magnitude of an acute antiviral immune response. J. Immunol. 172, 3454–3461 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Smyth, M.J. et al. NKT cells - conductors of tumor immunity? Curr. Opin. Immunol. 14, 165–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Galli, G. et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 197, 1051–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stein, P.L., Lee, H.M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70, 741–750 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Pear, W.S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients who participated in this study. We are also grateful to R. Buckley, L. Silverman, A. Malbran, G. Uzel, S. Adelstein, R. Walls, F. Alvaro and D. Anderson for providing patient samples. We thank A. Bendelac for providing the Cd1d1−/− mice, W. Pear for the MIGR vector, M. Kronenberg and L. Sidobre for the αGC-loaded tetramer and the NKT cell hybridoma, L. Lanier for the Ly49D and Ly49G2 antibodies and Kirin Brewery for αGC. We acknowledge X. Zhong, M. Weiss, V. Shapiro and J. Stadanlick for their review of this manuscript, G. Bunin for assistance with statistics, and S. Jain for his technical assistance. This work was supported by the American Society of Hematology (K.E.N.), the Juvenile Diabetes Foundation, International (P.L.S.), the US National Institutes of Health (K.E.N., P.L.S.), the New South Wales Cancer Council (S.G.T.) and the University of Sydney, Australia (C.S.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kim E Nichols or Paul L Stein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sap−/− mice have normal numbers of T and NK cells. (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, K., Hom, J., Gong, SY. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11, 340–345 (2005). https://doi.org/10.1038/nm1189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing