Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucose intolerance but normal satiety in mice with a null mutation in the glucagon–like peptide 1 receptor gene

Abstract

Glucagon–like peptide 1 (GLP1) is postulated to regulate blood glucose and satiety, but the biological importance of GLP1 as an incretin and neuropeptide remains controversial. The regulation of nutrient–induced insulin secretion is dependent on the secretion of incretins, gut–derived peptides that potentiate insulin secretion from the pancreatic islets1. To ascertain the relative physiological importance of GLP1 as a regulator of feeding behavior and insulin secretion, we have generated mice with a targeted disruption of the GLP1 receptor gene (GLP1R). These GLP1R−/− mice are viable, develop normally but exhibit increased levels of blood glucose following oral glucose challenge in association with diminished levels of circulating insulin. It is surprising that they also exhibit abnormal levels of blood glucose following intraperitoneal glucose challenge. Intracerebroventricular administration of GLP1 inhibited feeding in wild–type mice but not in GLP1R−/− mice; however, no evidence for abnormal body weight or feeding behavior was observed in GLP1R−/− mice. These observations demonstrate that GLP1 plays a central role in the regulation of glycemia; however, disruption of GLP1/GLP1R signaling in the central nervous system is not associated with perturbation of feeding behavior or obesity in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creutzfeldt, W. & Ebert, R. New developments in the incretin concept today. Diabetologi 28, 565–573 (1985).

    Article  CAS  Google Scholar 

  2. Mojsov, S., Weir, G.C. & Habener, J.F., Glucagon-like peptide I (7–37) co-encoded in the glucagon gene is potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79, 616–619 (1987).

    Article  CAS  Google Scholar 

  3. Kreymann, B., Ghatei, M.A., Williams, G. & Bloom, S.R. Glucagon-like peptide-1 7–36:A physiological incretin in man. Lancet ii, 1300–304 (1987).

    Article  Google Scholar 

  4. Holst, J.J., Orskov, C., Nielsen, O.V. & Schwartz, T.W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FERS Lett. 211, 169–174 (1987).

    CAS  Google Scholar 

  5. Fehmann, H.-C., Goke, R. & Goke, B. Cell and molecular biology of the incretin hormones glucagon-like peptide 1 and glucose-dependent releasing polypeptide. Endocrine Rev. 16, 390–410 (1995).

    Article  CAS  Google Scholar 

  6. Turton, M.D. et al. role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  Google Scholar 

  7. Nauck, M.A. et al. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307 (1993).

    Article  CAS  Google Scholar 

  8. Nauck, M.A. et al> Normalization of fasting hyperglycaemi by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) dibetic patients. Diabetologi 36, 741–744 (1993).

    Article  CAS  Google Scholar 

  9. Gutniak, M., Orskov, C., Holst, J.J.B. & Efendic, S. Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N. Engl.J. Med. 326, 1316–1322 (1992).

    Article  CAS  Google Scholar 

  10. Dupre, J. et al> Glucagon-like peptide I reduces postprandial glycemic excursions in IDDM. Diabetes 44, 626–630 (1995).

    Article  CAS  Google Scholar 

  11. Thorens, B. Expression cloning of the pancreatic B cell receptor for the gluco-in-cretin hormone glucagon-like peptide 1. Proc. Natl. Acad. Sci. USA 89, 8641–8645 (1992).

    Article  CAS  Google Scholar 

  12. Willms, B. et al> Gastric emptying, glucose responses, and insulin secretion after liquid test meal: Effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36)amide in type 2 (non-insulin-dependent) diabetic patients. J. Clin. Endocrinol. Metab. 81, 327–332 (1996).

    CAS  PubMed  Google Scholar 

  13. D' Alessio, D.A., Kahn, S.E., Leusner, C.R. & Ensinck, J.W. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J. Clin. Invest. 93, 2263–2266 (1994).

    Article  CAS  Google Scholar 

  14. D' Alessio, D.A., Prigeon, R.L. .& Ensinck, J.W. Enteral enhancement of glucose disposition by both insulin-dependent and insulin-independent processes — A physiological role of glucagon-like peptide I. Diabetes 44, 1433–1437 (1995).

    Article  CAS  Google Scholar 

  15. Toft-Nielsen, M., Madsbad, S. & Holst, J.J. The effect of glucagon-like peptide 1 (GLP-1) on glucose elimination in healthy subjects depends on the pancreatic glucoregul tory hormones. Diabetes 45, 552–556 (1996).

    Article  CAS  Google Scholar 

  16. Thorens, B. et al. Cloning and functional expression of the human islet GLP-1 receptor: Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes 42, 1678–1682 (1993).

    Article  CAS  Google Scholar 

  17. Gremlich, S. et al. Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes 44, 1202–1208 (1995).

    Article  CAS  Google Scholar 

  18. Drucker, D.J., Philippe, J., Mojsov, S., Chick, W.L. & Habener, J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA 84, 3434–3438 (1987).

    Article  CAS  Google Scholar 

  19. D' Alessio, D.A. et al. Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy ba boons. J. Clin. Invest. 97, 133–138 (1996).

    Article  CAS  Google Scholar 

  20. Ritzel, R., Orskov, C., Holst, J.J. & Nauck, M.A., rmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7–36amide] after subcutaneous injection in he althy volunteers: Dose-response-relationships. Diabetologia 38, 720–725 (1995).

    Article  CAS  Google Scholar 

  21. Hoosein, N.M. & Gurd, R.S. Human glucagon-like peptides 1 and 2 activate rat brain adenylate cyclase. FEBS Lett. 178, 83–86 (1984).

    Article  CAS  Google Scholar 

  22. Kanse, S.M., Kreymann, B., Ghatei, M.A. & Bloom, S.R. Identification and characterization of glucagon-like peptide-1 7–36amide-binding sites in the rat brain and lung. FEBS Lett. 241, 209–212 (1988).

    Article  CAS  Google Scholar 

  23. Campos, R.V., Lee, Y.C. & Drucker, D.J. Divergent tissue-specific and development al expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134, 2156–2164 (1994).

    Article  CAS  Google Scholar 

  24. Wei, Y. & Mojsov, S. Tissue-specific expression of the human receptor for glucagon-like peptide 1: Brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 358, 219–224 (1995).

    Article  CAS  Google Scholar 

  25. Erickson, J.C., Clegg, K.E. & Palmiter, R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381, 415–418 (1996).

    Article  CAS  Google Scholar 

  26. Egan, J.M. Montrose-Rafizadeh, C., Wang, Y., Bernier, M. & Roth, J. Glucagon-like peptide-1(7–36)amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: One of several potential extrapancreatic sites of GLP-1 action. Endocrinology 135, 2070–2075 (1994).

    Article  CAS  Google Scholar 

  27. Villanuev -Penacarrillo, M. L., Alcántar, A.I., Clemente, F., Delgado, E. & Valverde, I. Potent glycogenic effect of GLP-1 (7–36)amide in rat skeletal muscle. Diabetologi 37, 1163–1166 (1994).

    Article  Google Scholar 

  28. Hvidberg Nielsen, M.T., Hilsted, J., Orskov, C. & Holst, J.J. Effect of glucagon-like peptide-1 (proglucgon 78–107amide) on hepatic glucose production in healthy man. Metabolism 43, 104–108 (1994).

    Article  Google Scholar 

  29. Wheeler, M.B. et al. Functional expression of the rat glucagon-like peptide-I receptor: Evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 133, 57–62 (1993).

    Article  CAS  Google Scholar 

  30. Tybulewicz, V.L.J., Crawfor, C.E. Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-ablproto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  31. Nagy Rossant, J., Nagy, R.W. & Roder, J.C. Derivation of completely cell culture-derived mice from early passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  Google Scholar 

  32. Nagy, A. & Rossant, J. Production of completely ES cell-derived fetuses. in Gene Ta rgeting: Practic lapproach, (ed. Joyner, A.L.) 147–178 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  33. Wurst, W. & Joyner, A.L. Production of targeted embryonic stem cell clones. in Gene Targeting: Practical Approach, (ed. Joyner, A.L.) 33–61 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  34. Brubaker, P.L., Lee, Y.C. & Drucker, D.J. Alterations in proglucagon processing and inhibition of proglucagon gene expression in glucagon-SV40 T antigen transgenic mice. J. Biol. Chem. 267, 20728–20733 (1992).

    CAS  PubMed  Google Scholar 

  35. Akesson, T.R., Mantyh, P.W., Mantyh, C.R., Matt, D.W. & Micevych, P.E. Estrous cyclicity of 125I-cholecystokinin octapeptide binding in the ventromedial hypothalamic nucleus. Evidence for downmodulation by estrogen. Neuroendocrinology 45, 257–262 (1987).

    Article  CAS  Google Scholar 

  36. Heinrichs, S.C. et al. Endogenous corticotropin releasing factor modulates feeding induced by neuropeptide Y or a tail-pinch stressor. Peptides 13, 879–884 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scrocchi, L., Brown, T., Maclusky, N. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon–like peptide 1 receptor gene. Nat Med 2, 1254–1258 (1996). https://doi.org/10.1038/nm1196-1254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing