Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein

Abstract

The multidrug resistance-associated protein (MRP) mediates the cellular excretion of many drugs, glutathione S-conjugates (GS-X) of lipophilic xenobiotics and endogenous cysteinyl leukotrienes1–5. Increased MRP levels in tumor cells can cause multidrug resistance (MDR) by decreasing the intracellular drug concentration. The physiological role or roles of MRP remain ill-defined, however. We have generated MRP-deficient mice by using embryonic stem cell technology. Mice homozygous for the mrp mutant allele, mrp−/−, are viable and fertile, but their response to an inflammatory stimulus is impaired. We attribute this defect to a decreased secretion of leukotriene C4 (LTC4) from leukotriene-synthesizing cells. Moreover, the mrp−/− mice are hypersensitive to the anticancer drug etoposide. The phenbtype of mrp−/− mice is consistent with a role for MRP as the main LTC4-exporter in leukotriene-synthesizing cells, and as an important drug exporter in drug-sensitive cells. Our results suggest that this ubiquitous6 GS-X pump7,8 is dispensable in mice, making treatment of MDR with MRP-specific reversal agents potentially feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zaman, G.J.R. & Borst, P. MRP, mode of action and role in MDR. in Multidrug Resistance in Cancer Cells (eds. Gupta, S. & Tsuruo, T) 95–107 (Wiley & Sons, London, 1996).

    Google Scholar 

  2. Loe, D.W., Deeley, R.G. & Cole, S.P.C. Biology of the multidrug resistance-associated protein, MRP. Eur. J. Cancer 32A, 945–957 (1996).

    Article  CAS  Google Scholar 

  3. Leier, I. et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J. Biol. Chem. 269, 27807–27810 (1994).

    CAS  PubMed  Google Scholar 

  4. Cole, S.P.C. et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654 (1992).

    Article  CAS  Google Scholar 

  5. Jedlitschky, G. et al. Transport of gluthathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res. 56, 988–994 (1996).

    CAS  PubMed  Google Scholar 

  6. Flens, M.J. et al. Distribution of the multidrug resistance-associated protein (MRP) in normal and malignant human tissues. Am. J. Pathol. 148, 1237–1247 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishikawa, T., ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 17, 463–468 (1992).

    Article  CAS  Google Scholar 

  8. Saxena, M. & Henderson, G.B. MOAT4, a novel multispecific organic-anion transporter for glucuronides and mercapturates in mouse L1210 cells and human erythrocytes. Biochem. J. 320, 273–281 (1996).

    Article  CAS  Google Scholar 

  9. Gottesman, M.M., Hrycyna, C.A., Schoenlein, P.V., Germann, U.A. & Pastan, I. Genetic analysis of the multidrug transporter. Annu. Rev. Genet. 29, 607–649 (1995).

    Article  CAS  Google Scholar 

  10. Müller, M. et al. Overexpression of the gene encoding the multidrug resistance associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc. Natl. Acad. Sci. USA 91, 13033–13037 (1994).

    Article  Google Scholar 

  11. Zaman, G.J.R., Cnubben, N.H.P., Bladeren, P.J., Evers, R. & Borst, P. Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP. FEBS Lett. 391, 126–130 (1996).

    Article  CAS  Google Scholar 

  12. Zaman, G.J.R. et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc. Natl. Acad. Sci. USA 91, 8822–8826 (1994).

    Article  CAS  Google Scholar 

  13. Pulaski, L., Jedlitschy, G., Leier, I., Buchholz, U. & Keppler, D. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur. J. Biochem. 241, 644–648 (1996).

    Article  CAS  Google Scholar 

  14. Lam, B.K., Xu, K., Atkins, M.B. & Austen, K.F. Leukotriene C4 uses a probenecid-sensitive export carrier that does not recognize leukotriene B4 . Proc. Natl. Acad. Sci. USA 89, 11598–11602 (1992).

    Article  CAS  Google Scholar 

  15. Domen, J. et al. Impaired interleukin-3 response in pim-1-deficient bone marrow-derived mast cells. Blood 82, 1445–152 (1993).

    CAS  PubMed  Google Scholar 

  16. Razin, E., Mencia-Huerta, J.M., Lewis, R.A., Corey, E.J. & Austen, K.F. Generation of leukotriene C4 from a subclass of mast cells differentiated in vitro from mouse bone marrow. Proc. Natl. Acad. Sci. USA 79, 4665–4667 (1982).

    Article  CAS  Google Scholar 

  17. Paulusma, C.C. et al. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 271, 1126–1128 (1996).

    Article  CAS  Google Scholar 

  18. Hay, D.W.P., Torphy, T.J. & Undem, B.J. Cysteinyl leukotrienes in asthma: Old mediators up to new tricks. Trends Pharmacol. Sci. 16, 304–309 (1995).

    Article  CAS  Google Scholar 

  19. Chen, X.-S., Sheller, J.R., Johnson, E.N. & Funk, C.D. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature 372, 179–182 (1994).

    Article  CAS  Google Scholar 

  20. Goulet, J.L., Snouwaert, J.N., Latour, A.M., Coffman, T.M. & Koller, B.H. Altered inflammatory responses in leukotriene-deficient mice. Proc. Natl. Acad. Sci. USA 91, 12852–12856 (1994).

    Article  CAS  Google Scholar 

  21. Opas, E.E., Bonney, R.J. & Humes, J.L. Prostaglandin and leukotriene synthesis in mouse ears inflamed by arachidonic acid. J. Invest. Dermatol. 84, 253–256 (1985).

    Article  CAS  Google Scholar 

  22. Cole, S.P.C. et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 54, 5902–5910 (1994).

    CAS  PubMed  Google Scholar 

  23. Lorico, A., Rappa, G., Flavell, R.A. & Sartorelli, A.C. Double knockout of the MRP gene leads to increased drug sensitivity in vitro. Cancer Res. 56, 5351–5355 (1996).

    CAS  PubMed  Google Scholar 

  24. Ishikawa, T. et al. Coordinated induction of MRP/GS-X pump and γ-glutamylcysteine synthetase by heavy metals in human leukemia cells. J. Biol. Chem. 271, 14981–14988 (1996).

    Article  CAS  Google Scholar 

  25. Zaman, G.J.R. et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc. Natl. Acad. Sci. USA 92, 7690–7694 (1995).

    Article  CAS  Google Scholar 

  26. Schinkel, A.H. et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl. Acad. Sci. USA 94, 4028–4033 (1997).

    Article  CAS  Google Scholar 

  27. Schinkel, A.H. et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994).

    Article  CAS  Google Scholar 

  28. Stride, B.D. et al. Structure and expression of the messenger RNA encoding the murine multidrug resistance protein, an ATP-binding cassette transporter. Mol. Pharmacol. 49, 962–971 (1996).

    CAS  PubMed  Google Scholar 

  29. Verhagen, J., Wassink, G.A., Kijne, G.M., Viëtor, R.J. & Bruynzeel, P.L.B., Rapid, simple and efficient extraction of arachidonic acid metabolites, including the sulphidopeptide leukotrienes LTC4 and LTD4, using octadecyl reversed-phase extraction columns. J. Chromatogr. 378, 208–214 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijnholds, J., Evers, R., van Leusden, M. et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 3, 1275–1279 (1997). https://doi.org/10.1038/nm1197-1275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing