Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lactadherin promotes VEGF-dependent neovascularization

Abstract

Vascular endothelial growth factor (VEGF)-induced blood vessel growth is involved in both physiological and pathological angiogenesis and requires integrin-mediated signaling. We now show that an integrin-binding protein initially described in milk-fat globule, MFG-E8 (also known as lactadherin), is expressed in and around blood vessels and has a crucial role in VEGF-dependent neovascularization in the adult mouse. Using neutralizing antibodies and lactadherin-deficient animals, we show that lactadherin interacts with αvβ3 and αvβ5 integrins and alters both VEGF-dependent Akt phosphorylation and neovascularization. In the absence of VEGF, lactadherin administration induced αvβ3- and αvβ5-dependent Akt phosphorylation in endothelial cells in vitro and strongly improved postischemic neovascularization in vivo. These results show a crucial role for lactadherin in VEGF-dependent neovascularization and identify lactadherin as an important target for the modulation of neovascularization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vascular expression of lactadherin.
Figure 2: Generation of lactadherin-deficient mice.
Figure 3: Role of lactadherin in VEGF-induced angiogenesis.
Figure 4: Role of lactadherin in VEGF-induced postischemic neovascularization.
Figure 5: Role of lactadherin in VEGF–induced signaling.
Figure 6: Lactadherin can promote angiogenesis.

Similar content being viewed by others

References

  1. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

    Article  CAS  Google Scholar 

  2. Giancotti, F.G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  3. Borges, E., Jan, Y. & Ruoslahti, E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J. Biol. Chem. 275, 39867–39873 (2000).

    Article  CAS  Google Scholar 

  4. Ho, H.K. et al. Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in ischemia. Circulation 109, 1314–1319 (2004).

    Article  CAS  Google Scholar 

  5. Zhong, J. et al. Neovascularization of ischemic tissues by gene delivery of the extracellular matrix protein Del-1. J. Clin. Invest. 112, 30–41 (2003).

    Article  CAS  Google Scholar 

  6. Hidai, C. et al. Cloning and characterization of developmental endothelial locus-1: an embryonic endothelial cell protein that binds the alphavbeta3 integrin receptor. in Genes Dev. 12, 21–33 (1998).

    Article  CAS  Google Scholar 

  7. Stubbs, J.D. et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc. Natl. Acad. Sci. USA 87, 8417–8421 (1990).

    Article  CAS  Google Scholar 

  8. Taylor, M.R., Couto, J.R., Scallan, C.D., Ceriani, R.L. & Peterson, J.A. Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes ArgGlyAsp (RGD)-dependent cell adhesion. DNA Cell Biol. 16, 861–869 (1997).

    Article  CAS  Google Scholar 

  9. Andersen, M.H., Graversen, H., Fedosov, S.N., Petersen, T.E. & Rasmussen, J.T. Functional analyses of two cellular binding domains of bovine lactadherin. Biochemistry 39, 6200–6206 (2000).

    Article  CAS  Google Scholar 

  10. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 9, 182–187 (2002)

    Article  Google Scholar 

  11. Newburg, D.S. et al. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet 351, 1160–1164 (1998).

    Article  CAS  Google Scholar 

  12. Ensslin, M.A. & Shur, B.D. Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell 114, 405–417 (2003).

    Article  CAS  Google Scholar 

  13. Hanayama, R. et al. Autoimmune Disease and Impaired Uptake of Apoptotic Cells in MFG-E8-Deficient Mice. Science 304, 1147–1150 (2004).

    Article  CAS  Google Scholar 

  14. Akakura, S. et al. The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp. Cell Res. 292, 403–416 (2004).

    Article  CAS  Google Scholar 

  15. Oshima, K., Aoki, N., Kato, T., Kitajima, K. & Matsuda, T. Secretion of a peripheral membrane protein, MFG-E8, as a complex with membrane vesicles. Eur. J. Biochem. 269, 1209–1218 (2002).

    Article  CAS  Google Scholar 

  16. Miyasaka, K., Hanayama, R., Tanaka, M. & Nagata, S. Expression of milk fat globule epidermal growth factor 8 in immature dendritic cells for engulfment of apoptotic cells. Eur. J. Immunol. 34, 1414–1422 (2004).

    Article  CAS  Google Scholar 

  17. Thery, C. et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610 (1999).

    Article  CAS  Google Scholar 

  18. Skarnes, W.C., Moss, J.E., Hurtley, S.M. & Beddington, R.S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl. Acad. Sci. USA 92, 6592–6596 (1995).

    Article  CAS  Google Scholar 

  19. Mitchell, K.J. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat. Genet. 28, 241–249 (2001).

    Article  CAS  Google Scholar 

  20. Silvestre, J.S. et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ. Res. 93, 114–123 (2003).

    Article  CAS  Google Scholar 

  21. Kureishi, Y. et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase AKT and promotes angiogenesis in normocholesterolemic animals. Nat. Med. 6, 1004–1010 (2000).

    Article  CAS  Google Scholar 

  22. Gerber, H.P. et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3¢-kinase/AKT signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336–30343 (1998).

    Article  CAS  Google Scholar 

  23. Hood, J.D., Frausto, R., Kiosses, W.B., Schwartz, M.A. & Cheresh, D.A. Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J. Cell Biol. 162, 933–943 (2003).

    Article  CAS  Google Scholar 

  24. Oshima, K. et al. Lactation-dependent expression of an mRNA splice variant with an exon for a multiply O-glycosylated domain of mouse milk fat globule glycoprotein MFG-E8. Biochem. Biophys. Res. Commun. 254, 522–528 (1999).

    Article  CAS  Google Scholar 

  25. Reynolds, L.E. et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat. Med. 8, 27–34 (2002).

    Article  CAS  Google Scholar 

  26. Yang, H.T., Deschenes, M.R., Ogilvie, R.W. & Terjung, R.L. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ. Res. 79, 62–69 (1996).

    Article  CAS  Google Scholar 

  27. Sullivan, C.J., Doetschman, T. & Hoying, J.B. Targeted disruption of the Fgf2 gene does not affect vascular growth in the mouse ischemic hindlimb. J. Appl. Physiol. 93, 2009–2017 (2002).

    Article  CAS  Google Scholar 

  28. Tamarat, R., Silvestre, J.S., Durie, M. & Levy, B.I. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab. Invest. 82, 747–756 (2002).

    Article  CAS  Google Scholar 

  29. Silvestre, J.S. et al. Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10: role in ischemia-induced angiogenesis. Circ. Res. 89, 259–264 (2001).

    Article  CAS  Google Scholar 

  30. Hodivala-Dilke, K.M. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank INSERM, Institut Curie, European Community (grant QLRT-2001-00093) and Ligue Nationale contre le Cancer for funding; H. Laurell and H. Prats (INSERM U397, Toulouse, France) for kind gift of bFGF expression plasmid; K. Mitchell and W. Skarnes (Wellcome Trust, Cambridge, UK) for providing the ES cell line (see http://baygenomics.ucsf.edu). INSERM U689 and Cardiovascular Research Institute of Mastricht are partners of the European Vascular Genomics Network (EVGN), a Network of Excellence granted by the European Commission (contract No. LSHM-CT-2003-503254) and the contribution of S. Heeneman was undertaken in the context of EVGN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad Mallat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Generation of lactadherin-deficient mice. (PDF 100 kb)

Supplementary Fig. 2

Lactadherin and post-ischemic neovascularization. (PDF 143 kb)

Supplementary Fig. 3

Dose-dependent effect of lactadherin antibody administration. (PDF 110 kb)

Supplementary Fig. 4

Role of lactadherin in bFGF pro-angiogenic effect. (PDF 132 kb)

Supplementary Fig. 5

Putative model of lactadherin pro-angiogenic signaling. (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestre, JS., Théry, C., Hamard, G. et al. Lactadherin promotes VEGF-dependent neovascularization. Nat Med 11, 499–506 (2005). https://doi.org/10.1038/nm1233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing