Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NFAT and Osterix cooperatively regulate bone formation

Abstract

Immunosuppressants are crucial in the prevention of detrimental immune reactions associated with allogenic organ transplantation, but they often cause adverse effects in a number of biological systems, including the skeletal system1,2. Calcineurin inhibitors FK506 and cyclosporin A inhibit nuclear factor of activated T cells (NFAT) activity and induce strong immunosuppression3,4,5. Among NFAT proteins, NFATc1 is crucial for the differentiation of bone-resorbing osteoclasts6,7. Here we show FK506 administration induces the reduction of bone mass despite a blockade of osteoclast differentiation. This reduction is caused by severe impairment of bone formation, suggesting that NFAT transcription factors also have an important role in the transcriptional program of osteoblasts. In fact, bone formation is inhibited in Nfatc1- and Nfatc2-deficient cells as well as in FK506-treated osteoblasts. Overexpression of NFATc1 stimulates Osterix8-dependent activation of the Col1a1 (encoding type I collagen) promoter, but not Runx2-dependent activation of the Bglap1 (encoding osteocalcin) promoter9. NFAT and Osterix form a complex that binds to DNA, and this interaction is important for the transcriptional activity of Osterix. Thus, NFAT and Osterix cooperatively control osteoblastic bone formation. These results may provide important insight into the management of post-transplantation osteoporosis as well as a new strategy for promoting bone regeneration in osteopenic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreased bone mass in FK506-treated mice despite suppression of osteoclastogenesis.
Figure 2: The effect of FK506 on osteoblastic bone formation in a culture of calvarial osteoblasts.
Figure 3: NFATs have an important role in osteoblastic bone formation.
Figure 4: Regulation of Osterix-mediated transcriptional activity by NFAT.

Similar content being viewed by others

References

  1. Rodino, M.A. & Shane, E. Osteoporosis after organ transplantation. Am. J. Med. 104, 459–469 (1998).

    Article  CAS  Google Scholar 

  2. Leidig-Bruckner, G. et al. Frequency and predictors of osteoporotic fractures after cardiac or liver transplantation: a follow-up study. Lancet 357, 342–347 (2001).

    Article  CAS  Google Scholar 

  3. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  Google Scholar 

  4. Hogan, P.G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  Google Scholar 

  5. Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell 109 Suppl., S67–S79 (2002).

    Article  CAS  Google Scholar 

  6. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    Article  CAS  Google Scholar 

  7. Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004).

    Article  CAS  Google Scholar 

  8. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  Google Scholar 

  9. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  Google Scholar 

  10. Karsenty, G. & Wagner, E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389–406 (2002).

    Article  CAS  Google Scholar 

  11. Cvetkovic, M. et al. The deleterious effects of long-term cyclosporine A, cyclosporine G, and FK506 on bone mineral metabolism in vivo. Transplantation 57, 1231–1237 (1994).

    Article  CAS  Google Scholar 

  12. Fukunaga, J. et al. Expression of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in rat osteoporosis induced by immunosuppressant FK506. Bone 34, 425–431 (2004).

    Article  CAS  Google Scholar 

  13. Wang, E.A. et al. Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. USA 87, 2220–2224 (1990).

    Article  CAS  Google Scholar 

  14. Tang, L. et al. FK506 enhanced osteoblastic differentiation in mesenchymal cells. Cell Biol. Int. 26, 75–84 (2002).

    Article  CAS  Google Scholar 

  15. Ogawa, T. et al. Osteoblastic differentiation is enhanced by rapamycin in rat osteoblast-like osteosarcoma (ROS 17/2.8) cells. Biochem. Biophys. Res. Commun. 249, 226–230 (1998).

    Article  CAS  Google Scholar 

  16. Murshed, M., Harmey, D., Millan, J.L., McKee, M.D. & Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19, 1093–1104 (2005).

    Article  CAS  Google Scholar 

  17. Ranger, A.M. et al. The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis. J. Exp. Med. 191, 9–22 (2000).

    Article  CAS  Google Scholar 

  18. Tomita, M., Reinhold, M.I. & Molkentin, J.D. & Naski, M.C. Calcineurin and NFAT4 induce chondrogenesis. J. Biol. Chem. 277, 42214–42218 (2002).

    Article  CAS  Google Scholar 

  19. Zhou, S., Glowacki, J. & Yates, K.E. Comparison of TGF-β/BMP pathway signaled by demineralized bone powder and BMP-2 in human dermal fibroblasts. J. Bone Miner. Res. 19, 1732–1741 (2004).

    Article  CAS  Google Scholar 

  20. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    Article  CAS  Google Scholar 

  21. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    Article  CAS  Google Scholar 

  22. Massague, J. How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol. 1, 169–178 (2000).

    Article  CAS  Google Scholar 

  23. de la Pompa, J.L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182–186 (1998).

    Article  CAS  Google Scholar 

  24. Ranger, A.M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186–190 (1998).

    Article  CAS  Google Scholar 

  25. Blackham, A. & Griffiths, R.J. The effect of FK506 and cyclosporin A on antigen-induced arthritis. Clin. Exp. Immunol. 86, 224–228 (1991).

    Article  CAS  Google Scholar 

  26. Yocum, D.E. et al. Efficacy and safety of tacrolimus in patients with rheumatoid arthritis: a double-blind trial. Arthritis Rheum. 48, 3328–3337 (2003).

    Article  CAS  Google Scholar 

  27. Takayanagi, H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83, 170–179 (2005).

    Article  CAS  Google Scholar 

  28. Kim, S. et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 17, 1979–1991 (2003).

    Article  CAS  Google Scholar 

  29. Hodge, M.R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    Article  CAS  Google Scholar 

  30. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. W. Mak and L. Glimcher for providing Nfatc1−/− and Nfatc2−/− mice. We thank G. Karsenty, K. Imamura, M.A. Brown, RNAi Co., Ltd., and Fujisawa Pharmaceutical Co., Ltd. for providing plasmids and reagents. We also thank M. Noda, I. Morita, A. Izumi, T. Kohro, H. Murayama, T. Hongo, K. Sato, M. Shinohara, K. Nishikawa, H.J. Göber, S. Harumiya, A. Suematsu, Y. Kim, S. Ochi, M. Isobe, J. Hirooka, N. Kumasaki and I. Kawai for discussion and technical assistance. This work was supported in part by PRESTO and SORST programs of JST, grants for Genome Network Project from Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT), grants for the 21st century COE program, Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science and MEXT, Health Sciences Research Grants from the Ministry of Health, Labour and Welfare of Japan, grants from the Mitsubishi Foundation, the Kato Trust for Nambyo Research, Takeda Science Foundation, Daiwa Securities Health Foundation, the Naito Foundation, Kowa Life Science Foundation, Suzuken Memorial Foundation, Kato Memorial Bioscience Foundation, Inamori Foundation, Uehara Memorial Foundation and the Nakajima Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takayanagi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, T., Matsui, Y., Asagiri, M. et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med 11, 880–885 (2005). https://doi.org/10.1038/nm1270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing