Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An astrocytic basis of epilepsy

Abstract

Hypersynchronous neuronal firing is a hallmark of epilepsy, but the mechanisms underlying simultaneous activation of multiple neurons remains unknown. Epileptic discharges are in part initiated by a local depolarization shift that drives groups of neurons into synchronous bursting. In an attempt to define the cellular basis for hypersynchronous bursting activity, we studied the occurrence of paroxysmal depolarization shifts after suppressing synaptic activity using tetrodotoxin (TTX) and voltage-gated Ca2+ channel blockers. Here we report that paroxysmal depolarization shifts can be initiated by release of glutamate from extrasynaptic sources or by photolysis of caged Ca2+ in astrocytes. Two-photon imaging of live exposed cortex showed that several antiepileptic agents, including valproate, gabapentin and phenytoin, reduced the ability of astrocytes to transmit Ca2+ signaling. Our results show an unanticipated key role for astrocytes in seizure activity. As such, these findings identify astrocytes as a proximal target for the treatment of epileptic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic activity is not required for PDSs in hippocampal slices evoked by 4-AP.
Figure 2: PDSs are mediated by release of glutamate from action potential–independent sources.
Figure 3: Spontaneous depolarization shifts in four experimental models of epilepsy.
Figure 4: Epileptogenic agents evoke oscillatory increases in astrocytic cytosolic Ca2+ concentration, which precedes PDSs, and PDSs are spatially confined to small domains.
Figure 5: Astrocytes are the primary source of glutamate in experimental seizure.
Figure 6: Experimental seizures in adult mice and the effect of antiepileptic agents on astrocytic Ca2+ signaling.

Similar content being viewed by others

References

  1. Najm, I.M., Janigro, D. & Babb, T.L. Mechanisms of epileptogenesis and experimental models of seizures. in The Treatment of Epilepsy: Principles and Practice (ed. Wyllie, E.) 33–44 (Lippincott, Williams and Wilkins, New York, 2001).

    Google Scholar 

  2. Heinemann, U., Gabriel, S., Schuchmann, S. & Eder, C. Contribution of astrocytes to seizure activity. Adv. Neurol. 79, 583–590 (1999).

    CAS  PubMed  Google Scholar 

  3. Rogawski, M.A. & Loscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 5, 553–564 (2004).

    Article  CAS  Google Scholar 

  4. Meldrum, B.S. Update on the mechanism of action of antiepileptic drugs. Epilepsia 37 Suppl. 6, S4–11 (1996).

    Article  CAS  Google Scholar 

  5. Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994).

    Article  CAS  Google Scholar 

  6. Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).

    Article  CAS  Google Scholar 

  7. Fellin, T. et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004).

    Article  CAS  Google Scholar 

  8. Angulo, M.C., Kozlov, A.S., Charpak, S. & Audinat, E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24, 6920–6927 (2004).

    Article  CAS  Google Scholar 

  9. Luhmann, H.J., Dzhala, V.I. & Ben-Ari, Y. Generation and propagation of 4-AP-induced epileptiform activity in neonatal intact limbic structures in vitro. Eur. J. Neurosci. 12, 2757–2768 (2000).

    Article  CAS  Google Scholar 

  10. Yamaguchi, S. & Rogawski, M.A. Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res. 11, 9–16 (1992).

    Article  CAS  Google Scholar 

  11. Elmslie, K.S. Neurotransmitter modulation of neuronal calcium channels. J. Bioenerg. Biomembr. 35, 477–489 (2003).

    Article  CAS  Google Scholar 

  12. Drew, G.M. & Vaughan, C.W. Multiple metabotropic glutamate receptor subtypes modulate GABAergic neurotransmission in rat periaqueductal grey neurons in vitro. Neuropharmacology 46, 927–934 (2004).

    Article  CAS  Google Scholar 

  13. Grimaldi, M., Atzori, M., Ray, P. & Alkon, D.L. Mobilization of calcium from intracellular stores, potentiation of neurotransmitter-induced calcium transients, and capacitative calcium entry by 4-aminopyridine. J. Neurosci. 21, 3135–3143 (2001).

    Article  CAS  Google Scholar 

  14. Schuchmann, S., Albrecht, D., Heinemann, U. & von Bohlen und Halbach, O. Nitric oxide modulates low-Mg2+-induced epileptiform activity in rat hippocampal-entorhinal cortex slices. Neurobiol. Dis. 11, 96–105 (2002).

    Article  CAS  Google Scholar 

  15. Schneiderman, J.H. The role of long-term potentiation in persistent epileptiform burst-induced hyperexcitability following GABAA receptor blockade. Neuroscience 81, 1111–1122 (1997).

    Article  CAS  Google Scholar 

  16. Jones, M.S. & Barth, D.S. Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J. Neurophysiol. 88, 1016–1025 (2002).

    Article  CAS  Google Scholar 

  17. Perez-Velazquez, J.L., Valiante, T.A. & Carlen, P.L. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J. Neurosci. 14, 4308–4317 (1994).

    Article  CAS  Google Scholar 

  18. Cotrina, M.L. et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl Acad. Sci. USA 95, 15735–15740 (1998).

    Article  CAS  Google Scholar 

  19. Cotrina, M.L., Lin, J.H., Lopez-Garcia, J.C., Naus, C.C. & Nedergaard, M. ATP-mediated glia signaling. J. Neurosci. 20, 2835–2844 (2000).

    Article  CAS  Google Scholar 

  20. Kang, J., Jiang, L., Goldman, S. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  21. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6, 43–50 (2003).

    Article  CAS  Google Scholar 

  22. Liu, Q.S., Xu, Q., Arcuino, G., Kang, J. & Nedergaard, M. Astrocyte-mediated activation of neuronal kainate receptors. Proc. Natl. Acad. Sci. USA 101, 3172–3177 (2004).

    Article  CAS  Google Scholar 

  23. Ransom, B., Behar, T. & Nedergaard, M. New roles for astrocytes (stars at last). Trends Neurosci. 26, 520–522 (2003).

    Article  CAS  Google Scholar 

  24. Nedergaard, M., Ransom, B. & Goldman, S.A. New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003).

    Article  CAS  Google Scholar 

  25. Jeremic, A., Jeftinija, K., Stevanovic, J., Glavaski, A. & Jeftinija, S. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J. Neurochem. 77, 664–675 (2001).

    Article  CAS  Google Scholar 

  26. Nedergaard, M., Takano, T. & Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3, 748–755 (2002).

    Article  CAS  Google Scholar 

  27. Obrenovitch, T.P., Urenjak, J. & Zilkha, E. Evidence disputing the link between seizure activity and high extracellular glutamate. J. Neurochem. 66, 2446–2454 (1996).

    Article  CAS  Google Scholar 

  28. Mena, F.V., Baab, P.J., Zielke, C.L. & Zielke, H.R. In vivo glutamine hydrolysis in the formation of extracellular glutamate in the injured rat brain. J. Neurosci. Res. 60, 632–641 (2000).

    Article  CAS  Google Scholar 

  29. Benveniste, H. & Huttemeier, P.C. Microdialysis–theory and application. Prog. Neurobiol. 35, 195–215 (1990).

    Article  CAS  Google Scholar 

  30. Nimmerjahn, A., Kirchhoff, F., Kerr, J. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  Google Scholar 

  31. Hirase, H., Creso, J. & Buzsaki, G. Capillary level imaging of local cerebral blood flow in bicuculline-induced epileptic foci. Neuroscience 128, 209–216 (2004).

    Article  CAS  Google Scholar 

  32. Tashiro, A., Goldberg, J. & Yuste, R. Calcium oscillations in neocortical astrocytes under epileptiform conditions. J. Neurobiol. 50, 45–55 (2002).

    Article  CAS  Google Scholar 

  33. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  Google Scholar 

  34. Duffy, S. & MacVicar, B. Modulation of neuronal excitability by astrocytes. in Jasper's Basic Mechanisms of the Epilepsies 3rd edn: Advances in Neurology, Vol 79 (eds. Delgado-Escueta, A., Wilson, W., Olsen, R. & Porter, R.) 573–581 (Lippincott Williams & Wilkins, Philadelphia, 1999).

    Google Scholar 

  35. Haydon, P.G. Glia: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001).

    Article  CAS  Google Scholar 

  36. Miles, R. & Wong, R.K. Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306, 371–373 (1983).

    Article  CAS  Google Scholar 

  37. Heinemann, U., Konnerth, A., Pumain, R. & Wadman, W.J. Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv. Neurol. 44, 641–661 (1986).

    CAS  PubMed  Google Scholar 

  38. Stout, C. & Charles, A. Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43, 265–273 (2003).

    Article  Google Scholar 

  39. Ye, Z.C., Wyeth, M.S., Baltan-Tekkok, S. & Ransom, B.R. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23, 3588–3596 (2003).

    Article  CAS  Google Scholar 

  40. Arcuino, G. et al. Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl. Acad. Sci. USA 99, 9840–9845 (2002).

    Article  CAS  Google Scholar 

  41. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994).

    Article  CAS  Google Scholar 

  42. Bikson, M., Ghai, R.S., Baraban, S.C. & Durand, D.M. Modulation of burst frequency, duration, and amplitude in the zero-Ca(2+) model of epileptiform activity. J. Neurophysiol. 82, 2262–2270 (1999).

    Article  CAS  Google Scholar 

  43. Carmignoto, G., Pasti, L. & Pozzan, T. On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J. Neurosci. 18, 4637–4645 (1998).

    Article  CAS  Google Scholar 

  44. Rogawski, M.A. & Loscher, W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat. Med. 10, 685–692 (2004).

    Article  CAS  Google Scholar 

  45. Takano, T. et al. Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015 (2001).

    Article  CAS  Google Scholar 

  46. Valiante, T.A., Perez Velazquez, J.L., Jahromi, S.S. & Carlen, P.L. Coupling potentials in CA1 neurons during calcium-free-induced field burst activity. J. Neurosci. 15, 6946–6956 (1995).

    Article  CAS  Google Scholar 

  47. Ayala, G.X. & Tapia, R. Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo. Neuropharmacology 45, 649–660 (2003).

    Article  CAS  Google Scholar 

  48. Urenjak, J. & Obrenovitch, T.P. Kynurenine 3-hydroxylase inhibition in rats: effects on extracellular kynurenic acid concentration and N-methyl-D-aspartate-induced depolarisation in the striatum. J. Neurochem. 75, 2427–2433 (2000).

    Article  CAS  Google Scholar 

  49. Boothe, D.M. Anticonvulsant therapy in small animals. Vet. Clin. North Am. Small Anim. Pract. 28, 411–448 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Goldman, S. Rothman, H. Yeh, T. Obrenovitch and E. Vates for their comments. This work was supported in part by US National Institutes of Health and National Institute of Neurological Disorders and Stroke grants NS30007 and NS38073 (to M.N.), NS39997 (to J.K.) and HD16596 (to H.R.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Feng Tian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, GF., Azmi, H., Takano, T. et al. An astrocytic basis of epilepsy. Nat Med 11, 973–981 (2005). https://doi.org/10.1038/nm1277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing