Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection

Abstract

Host defense against viruses probably depends on targeted death of infected host cells and then clearance of cellular corpses by macrophages. For this process to be effective, the macrophage must presumably avoid its own virus-induced death. Here we identify one such mechanism. We show that mice lacking the chemokine Ccl5 are immune compromised to the point of delayed viral clearance, excessive airway inflammation and respiratory death after mouse parainfluenza or human influenza virus infection. Virus-inducible levels of Ccl5 are required to prevent apoptosis of virus-infected mouse macrophages in vivo and mouse and human macrophages ex vivo. The protective effect of Ccl5 requires activation of the Ccr5 chemokine receptor and consequent bilateral activation of Gαi-PI3K-AKT and Gαi-MEK-ERK signaling pathways. The antiapoptotic action of chemokine signaling may therefore allow scavengers to finally stop the host cell-to-cell infectious process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excessive airway inflammation and respiratory failure after paramyxoviral infection in Ccl5−/− mice.
Figure 2: Excessive macrophage apoptosis after paramyxoviral infection in Ccl5−/− mice.
Figure 3: Ccl5- and Ccr5-dependent protection from virus-induced apoptosis in isolated macrophages.
Figure 4: CCL5 signals to Gαi-PI3K-Akt and MEK-ERK pathways that block virus-induced apoptosis.
Figure 5: Decreased activation of Akt and Erk1/2 in Ccl5−/− mice after viral infection.
Figure 6: Effects of macrophage depletion on viral infection in wild-type and Ccl5−/− mice.

Similar content being viewed by others

References

  1. Walter, M.J., Kajiwara, N., Karanja, P., Castro, M. & Holtzman, M.J. IL-12 p40 production by barrier epithelial cells during airway inflammation. J. Exp. Med. 193, 339–352 (2001).

    Article  CAS  Google Scholar 

  2. Doherty, P.C. & Christensen, J.P. Accessing complexity: the dynamics of virus-specific T cell responses. Annu. Rev. Immunol. 18, 561–592 (2000).

    Article  CAS  Google Scholar 

  3. Taguchi, M. et al. Patterns for RANTES secretion and intercellular adhesion molecule-1 expression mediate transepithelial T cell traffic based on analyses in vitro and in vivo. J. Exp. Med. 187, 1927–1940 (1998).

    Article  CAS  Google Scholar 

  4. Look, D.C. et al. Direct suppression of Stat1 function during adenoviral infection. Immunity 9, 871–880 (1998).

    Article  CAS  Google Scholar 

  5. Koga, T. et al. Virus-inducible expression of a host chemokine gene relies on replication-linked mRNA stabilization. Proc. Natl. Acad. Sci. USA 96, 5680–5685 (1999).

    Article  CAS  Google Scholar 

  6. Topham, D.J., Tripp, R.A. & Doherty, P.C. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J. Immunol. 159, 5197–5200 (1997).

    CAS  Google Scholar 

  7. Bacon, K.B., Premack, B.A., Gardner, P. & Schall, T.J. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 269, 1727–1730 (1995).

    Article  CAS  Google Scholar 

  8. Lillard, J.J.W., Boyaka, P.N., Taub, D.D. & McGhee, J.R. RANTES potentiates antigen-specific mucosal immune responses. J. Immunol. 166, 162–169 (2001).

    Article  CAS  Google Scholar 

  9. Makino, Y. et al. Impaired T cell function in RANTES-deficient mice. Clin. Immunol. 102, 302–309 (2002).

    Article  CAS  Google Scholar 

  10. Cook, D.N. et al. Requirement for MIP-1α for an inflammatory response to viral infection. Science 269, 1583–1585 (1995).

    Article  CAS  Google Scholar 

  11. Lu, B. et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–608 (1998).

    Article  CAS  Google Scholar 

  12. Roux, P.P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344 (2004).

    Article  CAS  Google Scholar 

  13. Fruman, D.A. & Cantley, L.C. Phosphoinositide 3-kinase in immunological systems. Semin. Immunol. 14, 7–18 (2002).

    Article  CAS  Google Scholar 

  14. Walter, M.J., Morton, J.D., Kajiwara, N., Agapov, E. & Holtzman, M.J. Viral induction of a chronic asthma phenotype and genetic segregation from the acute response. J. Clin. Invest. 110, 165–175 (2002).

    Article  CAS  Google Scholar 

  15. Lukacs, N.W. et al. Differential recruitment of leukocyte populations and alteration of airway hyperreactivity by C–C family chemokines in allergic airway inflammation. J. Immunol. 158, 4398–4404 (1997).

    CAS  Google Scholar 

  16. Pelchen-Matthews, A., Signoret, N., Klasse, P.J., Fraile-Ramos, A. & Marsh, M. Chemokine receptor trafficking and viral replication. Immunol. Rev. 168, 33–49 (1999).

    Article  CAS  Google Scholar 

  17. Mellado, M., Rodriguez-Frade, J.M., Manes, S. & Martinez-A., C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 19, 397–421 (2001).

    Article  CAS  Google Scholar 

  18. Chang, T.L. et al. Interaction of the CC-chemokine RANTES with glycosaminoglycans activates a p44/42 mitogen-activated protein kinase-dependent signaling pathway and enhances human immunodeficiency virus type I infectivity. J. Virol. 76, 2245–2254 (2002).

    Article  CAS  Google Scholar 

  19. Cyster, J.G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 (1999).

    Article  CAS  Google Scholar 

  20. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    Article  CAS  Google Scholar 

  21. Thelen, M. Dancing to the tune of chemokines. Nat. Immunol. 2, 129–134 (2001).

    Article  CAS  Google Scholar 

  22. Berger, E.A., Murphy, P.M. & Farber, J.M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  Google Scholar 

  23. Lalani, A.S. et al. Use of chemokine receptors by poxviruses. Science 286, 1968–1971 (1999).

    Article  CAS  Google Scholar 

  24. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    Article  CAS  Google Scholar 

  25. Domachowske, J.B. & Rosenberg, H.F. Respiratory syncytial virus infection: immune response, immunopathogenesis, and treatment. Clin. Microbiol. Rev. 12, 298–309 (1999).

    Article  CAS  Google Scholar 

  26. Sumino, K.C. et al. Detection of severe human metapneumovirus infection by real-time polymerase chain reaction and histopathological assessment. J. Inf. Dis. 192, 1052–1060 (2005).

    Article  Google Scholar 

  27. Ungchusak, K. et al. Probable person-to-person transmission of avian influenza A (H5N1). N. Engl. J. Med. 352, 333–340 (2005).

    Article  CAS  Google Scholar 

  28. Holtzman, M.J. et al. Immunity, inflammation, and remodeling in the airway epithelial barrier: epithelial-viral-allergic paradigm. Physiol. Rev. 82, 19–46 (2002).

    Article  CAS  Google Scholar 

  29. Hull, J. et al. Variants of the chemokine receptor CCR5 are associatd with severe bronchiolitis caused by respiratory syncytial virus. J. Infect. Dis. 188, 904–907 (2003).

    Article  CAS  Google Scholar 

  30. Tran, E.H., Kuziel, W.A. & Owens, T. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1α or its CCR5 receptor. Eur. J. Immunol. 30, 1410–1415 (2000).

    Article  CAS  Google Scholar 

  31. Roscic-Mrkic, B. et al. Role of macrophages in measles virus infection of genetically modified mice. J. Virol. 75, 3343–3351 (2001).

    Article  CAS  Google Scholar 

  32. Chen, Y. et al. Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol. Genomics 14, 251–260 (2003).

    Article  Google Scholar 

  33. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  34. Wu, Z., Irizarry, R.A., Gentleman, R., Martinez-Murillo, F. & Spencer, F. A model-based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 99, 909–917 (2004).

    Article  Google Scholar 

  35. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. in Stat. Appl. Genet. Mol. Biol. (2004).

  36. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate — a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  37. Lang, R., Rutschman, R.L., Greaves, D.R. & Murray, P.J. Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. J. Immunol. 168, 3402–3411 (2002).

    Article  CAS  Google Scholar 

  38. Stephens, R., Randolph, D.A., Huang, G., Holtzman, M.J. & Chaplin, D.D. Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma. J. Immunol. 169, 5458–5467 (2002).

    Article  CAS  Google Scholar 

  39. Saunders, B.M. & Cheers, C. Inflammatory response following intranasal infection with Mycobacterium avium complex: role of T-cell subsets and gamma interferon. Infect. Immun. 63, 2282–2287 (1995).

    CAS  Google Scholar 

  40. Flynn, K.J. et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683–691 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (Heart, Lung, and Blood Institute), the Martin Schaeffer Fund and the Alan A. and Edith L. Wolff Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J Holtzman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Time course of viral replication and Ccl5 and Ccr5 expression. (PDF 2964 kb)

Supplementary Fig. 2

Similar T-cell activation in Ccl5-null and wild-type control mice. (PDF 129 kb)

Supplementary Fig. 3

Decreased survival and increased macrophage apoptosis after influenza virus infection in Ccl5- and Ccr5-null mice. (PDF 1257 kb)

Supplementary Fig. 4

Time course of viral persistence and macrophage accumulation and apoptosis in Ccl5-null mice. (PDF 3447 kb)

Supplementary Fig. 5

Ccr5 induction and Ccl5/Ccr5 protection from apoptosis in mouse macrophages after viral infection. (PDF 1328 kb)

Supplementary Fig. 6

CCL3, CCL4, and CCL5 signaling to ERK/AKT at low ligand levels and CCL5 signaling to Src/MEK/ERK at high ligand levels. (PDF 487 kb)

Supplementary Fig. 7

Ccl5 protection against virus-induced apoptosis in airway epithelial cells. (PDF 482 kb)

Supplementary Fig. 8

Scheme for mechanisms of apoptosis during viral infection. (PDF 559 kb)

Supplementary Methods (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyner, J., Uchida, O., Kajiwara, N. et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med 11, 1180–1187 (2005). https://doi.org/10.1038/nm1303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing