Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase

Abstract

Abdominal aortic aneurysm (AAA) is a common disease among elderly people that, when surgical treatment is inapplicable, results in progressive expansion and rupture of the aorta with high mortality. Although nonsurgical treatment for AAA is much awaited, few options are available because its molecular pathogenesis remains elusive. Here, we identify JNK as a proximal signaling molecule in the pathogenesis of AAA. Human AAA tissue showed a high level of phosphorylated JNK. We show that JNK programs a gene expression pattern in different cell types that cooperatively enhances the degradation of the extracellular matrix while suppressing biosynthetic enzymes of the extracellular matrix. Selective inhibition of JNK in vivo not only prevented the development of AAA but also caused regression of established AAA in two mouse models. Thus, JNK promotes abnormal extracellular matrix metabolism in the tissue of AAA and may represent a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and phosphorylation of MAP kinases and MMPs in human AAA.
Figure 2: The role of JNK in secretion of MMPs.
Figure 3: Prevention of the development of AAA by JNK inhibition.
Figure 4: The role of ECM biosynthesis in AAA development.
Figure 5: Regression of AAA by JNK inhibition.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Curci, J.A., Lee, J.K. & Thompson, R.W. Pathogenesis of Abdominal Aortic Aneurysm. in Current Therapy in Vascular Surgery (eds. Ernst, C.B. & Stanley, J.C.) 199–206 (Elsevier, Philadelphia, 2001).

    Google Scholar 

  2. Upchurch, G.R., Jr. Gene therapy to treat aortic aneurysms: right goal, wrong strategy. Circulation 112, 939–940 (2005).

    Article  Google Scholar 

  3. Pyo, R. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641–1649 (2000).

    Article  CAS  Google Scholar 

  4. Longo, G.M. et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 110, 625–632 (2002).

    Article  CAS  Google Scholar 

  5. Allaire, E., Forough, R., Clowes, M., Starcher, B. & Clowes, A.W. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J. Clin. Invest. 102, 1413–1420 (1998).

    Article  CAS  Google Scholar 

  6. Krettek, A., Sukhova, G.K. & Libby, P. Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arterioscler. Thromb. Vasc. Biol. 23, 582–587 (2003).

    Article  CAS  Google Scholar 

  7. Huffman, M.D. et al. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms. Surgery 128, 429–438 (2000).

    Article  CAS  Google Scholar 

  8. Rowe, D., McGoodwin, E., Martin, G. & Grahn, D. Decreased lysyl oxidase activity in the aneurysm-prone, mottled mouse. J. Biol. Chem. 252, 939–942 (1977).

    CAS  PubMed  Google Scholar 

  9. Bode, M.K. et al. Increased amount of type III pN-collagen in AAA when compared with AOD. Eur. J. Vasc. Endovasc. Surg. 23, 413–420 (2002).

    Article  CAS  Google Scholar 

  10. Bigatel, D.A. et al. The matrix metalloproteinase inhibitor BB-94 limits expansion of experimental abdominal aortic aneurysms. J. Vasc. Surg. 29, 130–138 (1999).

    Article  CAS  Google Scholar 

  11. Petrinec, D. et al. Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J. Vasc. Surg. 23, 336–346 (1996).

    Article  CAS  Google Scholar 

  12. Prall, A.K. et al. Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J. Vasc. Surg. 35, 923–929 (2002).

    Article  Google Scholar 

  13. Mosorin, M. et al. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J. Vasc. Surg. 34, 606–610 (2001).

    Article  CAS  Google Scholar 

  14. Baxter, B.T. et al. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study. J. Vasc. Surg. 36, 1–12 (2002).

    Article  Google Scholar 

  15. Allaire, E. et al. Vascular smooth muscle cell endovascular therapy stabilizes already developed aneurysms in a model of aortic injury elicited by inflammation and proteolysis. Ann. Surg. 239, 417–427 (2004).

    Article  Google Scholar 

  16. Buth, J. & Harris, P. Endovascular Treatment of Aortic Aneurysms. in Vascular Surgery (ed. Rutherford, R.B.) 1452–1475 (Elsevier, Philadelphia, 2005).

    Google Scholar 

  17. Patel, M.I., Melrose, J., Ghosh, P. & Appleberg, M. Increased synthesis of matrix metalloproteinases by aortic smooth muscle cells is implicated in the etiopathogenesis of abdominal aortic aneurysms. J. Vasc. Surg. 24, 82–92 (1996).

    Article  CAS  Google Scholar 

  18. Manning, A.M. & Davis, R.J. Targeting JNK for therapeutic benefit: from junk to gold? Nat. Rev. Drug Discov. 2, 554–565 (2003).

    Article  CAS  Google Scholar 

  19. Galis, Z.S. & Khatri, J.J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90, 251–262 (2002).

    Article  CAS  Google Scholar 

  20. Mietus-Snyder, M., Glass, C.K. & Pitas, R.E. Transcriptional activation of scavenger receptor expression in human smooth muscle cells requires AP-1/c-Jun and C/EBPbeta. Arterioscler. Thromb. Vasc. Biol. 18, 1440–1449 (1998).

    Article  CAS  Google Scholar 

  21. Yan, L., Borregaard, N., Kjeldsen, L. & Moses, M.A. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J. Biol. Chem. 276, 37258–37265 (2001).

    Article  CAS  Google Scholar 

  22. Maki, J. et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106, 2503–2509 (2002).

    Article  Google Scholar 

  23. Ricci, R. et al. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 306, 1558–1561 (2004).

    Article  CAS  Google Scholar 

  24. Bagowski, C.P. & Ferrell, J.E., Jr. Bistability in the JNK cascade. Curr. Biol. 11, 1176–1182 (2001).

    Article  CAS  Google Scholar 

  25. Borsello, T. et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med. 9, 1180–1186 (2003).

    Article  CAS  Google Scholar 

  26. Daugherty, A., Manning, M.W. & Cassis, L.A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 105, 1605–1612 (2000).

    Article  CAS  Google Scholar 

  27. Shin, M. et al. An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim. Biophys. Acta 1589, 311–316 (2002).

    Article  CAS  Google Scholar 

  28. Gum, R., Wang, H., Lengyel, E., Juarez, J. & Boyd, D. Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14, 1481–1493 (1997).

    Article  CAS  Google Scholar 

  29. Cho, A., Graves, J. & Reidy, M.A. Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 2527–2532 (2000).

    Article  CAS  Google Scholar 

  30. Ventura, J.J., Kennedy, N.J., Flavell, R.A. & Davis, R.J. JNK regulates autocrine expression of TGF-beta1. Mol. Cell 15, 269–278 (2004).

    Article  CAS  Google Scholar 

  31. Leask, A., Holmes, A., Black, C.M. & Abraham, D.J. Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J. Biol. Chem. 278, 13008–13015 (2003).

    Article  CAS  Google Scholar 

  32. Schlumberger, W., Thie, M., Rauterberg, J. & Robenek, H. Collagen synthesis in cultured aortic smooth muscle cells. Modulation by collagen lattice culture, transforming growth factor-beta 1, and epidermal growth factor. Arterioscler. Thromb. 11, 1660–1666 (1991).

    Article  CAS  Google Scholar 

  33. Dai, J. et al. Overexpression of transforming growth factor-beta1 stabilizes already-formed aortic aneurysms: a first approach to induction of functional healing by endovascular gene therapy. Circulation 112, 1008–1015 (2005).

    Article  CAS  Google Scholar 

  34. Takagi, Y., Ishikawa, M., Nozaki, K., Yoshimura, S. & Hashimoto, N. Increased expression of phosphorylated c-Jun amino-terminal kinase and phosphorylated c-Jun in human cerebral aneurysms. Neurosurgery 51, 997–1002 (2002).

    PubMed  Google Scholar 

  35. Parodi, F.E., Mao, D., Ennis, T.L., Bartoli, M.A. & Thompson, R.W. Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-kappaB. J. Vasc. Surg. 41, 479–489 (2005).

    Article  Google Scholar 

  36. Nakashima, H. et al. Inhibition of experimental abdominal aortic aneurysm in the rat by use of decoy oligodeoxynucleotides suppressing activity of nuclear factor kappaB and ets transcription factors. Circulation 109, 132–138 (2004).

    Article  CAS  Google Scholar 

  37. Kim, H.S., Luo, L., Pflugfelder, S.C. & Li, D.Q. Doxycycline inhibits TGF-beta1-induced MMP-9 via Smad and MAPK pathways in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 46, 840–848 (2005).

    Article  Google Scholar 

  38. Sato, H. & Seiki, M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395–405 (1993).

    CAS  PubMed  Google Scholar 

  39. Papa, S., Zazzeroni, F., Pham, C.G., Bubici, C. & Franzoso, G. Linking JNK signaling to NF-kappaB: a key to survival. J. Cell Sci. 117, 5197–5208 (2004).

    Article  CAS  Google Scholar 

  40. Bennett, B.L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686 (2001).

    Article  CAS  Google Scholar 

  41. Adachi, M. et al. Proteasome-dependent decrease in Akt by growth factors in vascular smooth muscle cells. FEBS Lett. 554, 77–80 (2003).

    Article  CAS  Google Scholar 

  42. Aoki, H. et al. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J. Biol. Chem. 277, 10244–10250 (2002).

    Article  CAS  Google Scholar 

  43. Zempo, N. et al. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J. Vasc. Surg. 20, 209–217 (1994).

    Article  CAS  Google Scholar 

  44. Palamakumbura, A.H. & Trackman, P.C. A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal. Biochem. 300, 245–251 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Boyle and G.S. Firestein for suggestions, S. Saito, M. Oishi and T. Hozawa for technical assistance and E.O. Weinberg, H. Suzuki and H. Oda for critical reading. This work was supported in part by Grant-in-aid for Scientific Research (KAKENHI 12770651, 14657284 and 17591337 (to K.Y.), 12670673, 12204081, 14370229 and 16390365 (to H.A.), 12770344 (to K.F.) and 16209026 (to M.M.)) from MEXT Japan, Japan Heart Foundation/Zeria Pharmaceutical Grant for Research on Cardiovascular Disease (to H.A.), New Frontier Project from Yamaguchi University (to H.A. and K.Y.) and a Grant from Sankyo Company for the Department of Molecular Cardiovascular Biology, Yamaguchi University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Aoki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression and effect of JNK activity modifiers in VSMCs. (PDF 185 kb)

Supplementary Fig. 2

Definition of JNK Dependence Index. (PDF 170 kb)

Supplementary Fig. 3

Phosphorylated JNK in control, AAA and AOD tissues. (PDF 200 kb)

Supplementary Fig. 4

The role of JNK in expression and secretion of MMPs. (PDF 236 kb)

Supplementary Fig. 5

Determination of aortic internal diameter in live mice by ultrasonography. (PDF 293 kb)

Supplementary Table

The entire list of JNK-regulated genes. (PDF 479 kb)

Supplementary Methods (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, K., Aoki, H., Ikeda, Y. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11, 1330–1338 (2005). https://doi.org/10.1038/nm1335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing