Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation

Abstract

We describe the tripeptide neutrophil chemoattractant N-acetyl Pro-Gly-Pro (PGP), derived from the breakdown of extracellular matrix (ECM), which shares sequence and structural homology with an important domain on alpha chemokines. PGP caused chemotaxis and production of superoxide through CXC receptors, and administration of peptide caused recruitment of neutrophils (PMNs) into lungs of control, but not CXCR2-deficient mice. PGP was generated in mouse lung after exposure to lipopolysaccharide, and in vivo and in vitro blockade of PGP with monoclonal antibody suppressed PMN responses as much as chemokine-specific monoclonal antibody. Extended PGP treatment caused alveolar enlargement and right ventricular hypertrophy in mice. PGP was detectable in substantial concentrations in a majority of bronchoalveolar lavage samples from individuals with chronic obstructive pulmonary disease, but not control individuals. Thus, PGP's activity links degradation of ECM with neutrophil recruitment in airway inflammation, and PGP may be a biomarker and therapeutic target for neutrophilic inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PGP is chemotactic for PMNs in vitro and in vivo.
Figure 2: Structural homology between PGP and the neutrophil chemokines.
Figure 3: PMN chemotaxis to PGP is dependent on the CXC chemokine receptors.
Figure 4: Kinetics of neutrophil influx, CXC chemokine and PGP production in the mouse airway after exposure to aerosolized LPS (a).
Figure 5: Extended exposure to PGP causes alveolar enlargement and right ventricular hypertrophy.
Figure 6: BAL fluid samples from individuals with COPD contain elevated levels of PGP.

Similar content being viewed by others

References

  1. Kobzik, L. The Lung. in Robbins Pathologic Basis of Disease (eds. Cotran, R.S., Kumar, V. & Collins, T.) (W.B. Saunders Company, Philadelphia, 1999).

    Google Scholar 

  2. Abraham, E., Carmody, A., Shenkar, R. & Arcaroli, J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1137–L1145 (2000).

    Article  CAS  Google Scholar 

  3. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  Google Scholar 

  4. Baggiolini, M., Dewald, B. & Moser, B. Human chemokines: an update. Annu. Rev. Immunol. 15, 675–705 (1997).

    Article  CAS  Google Scholar 

  5. Weathington, N.M. & Blalock, J.E. The biology of CXC chemokines and their receptors. in Current Topics in Membranes Vol. 55 (ed. Schwiebert, L.M.) 49–71 (Elsevier, New York, 2005).

    Google Scholar 

  6. Cacalano, G. et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684 (1994).

    Article  CAS  Google Scholar 

  7. Chang, C. & Houck, J.C. Demonstration of the chemotactic properties of collagen. Proc. Soc. Exp. Biol. Med. 134, 22–26 (1970).

    Article  CAS  Google Scholar 

  8. Postlethwaite, A.E. & Kang, A.H. Collagen-and collagen peptide-induced chemotaxis of human blood monocytes. J. Exp. Med. 143, 1299–1307 (1976).

    Article  CAS  Google Scholar 

  9. Laskin, D.L., Kimura, T., Sakakibara, S., Riley, D.J. & Berg, R.A. Chemotactic activity of collagen-like polypeptides for human peripheral blood neutrophils. J. Leukoc. Biol. 39, 255–266 (1986).

    Article  CAS  Google Scholar 

  10. Senior, R.M. et al. Neutrophils show chemotaxis to type IV collagen and its 7S domain and contain a 67 kD type IV collagen binding protein with lectin properties. Am. J. Respir. Cell Mol. Biol. 1, 479–487 (1989).

    Article  CAS  Google Scholar 

  11. Pfister, R.R., Haddox, J.L., Sommers, C.I. & Lam, K.W. Identification and synthesis of chemotactic tripeptides from alkali-degraded whole cornea. A study of N-acetyl-proline-glycine-proline and N-methyl-proline-glycine-proline. Invest. Ophthalmol. Vis. Sci. 36, 1306–1316 (1995).

    CAS  PubMed  Google Scholar 

  12. Pfister, R.R., Haddox, J.L. & Sommers, C.I. Alkali-degraded cornea generates a low molecular weight chemoattractant for polymorphonuclear leukocytes. Invest. Ophthalmol. Vis. Sci. 34, 2297–2304 (1993).

    CAS  PubMed  Google Scholar 

  13. Pfister, R.R., Haddox, J.L. & Sommers, C.I. Injection of chemoattractants into normal cornea: a model of inflammation after alkali injury. Invest. Ophthalmol. Vis. Sci. 39, 1744–1750 (1998).

    CAS  PubMed  Google Scholar 

  14. Riley, D.J. et al. Neutrophil response following intratracheal instillation of collagen peptides into rat lungs. Exp. Lung Res. 14, 549–563 (1988).

    Article  CAS  Google Scholar 

  15. Foronjy, R.F., Okada, Y., Cole, R. & D'Armiento, J. Progressive adult-onset emphysema in transgenic mice expressing human MMP-1 in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L727–L737 (2003).

    Article  CAS  Google Scholar 

  16. Selman, M. et al. Tobacco smoke-induced lung emphysema in guinea pigs is associated with increased interstitial collagenase. Am. J. Physiol. 271, L734–L743 (1996).

    CAS  PubMed  Google Scholar 

  17. Corbel, M. et al. Repeated endotoxin exposure induces interstitial fibrosis associated with enhanced gelatinase (MMP-2 and MMP-9) activity. Inflamm. Res. 50, 129–135 (2001).

    Article  CAS  Google Scholar 

  18. Hauert, A.B., Martinelli, S., Marone, C. & Niggli, V. Differentiated HL-60 cells are a valid model system for the analysis of human neutrophil migration and chemotaxis. Int. J. Biochem. Cell Biol. 34, 838–854 (2002).

    Article  CAS  Google Scholar 

  19. Downs, J.T. et al. Analysis of collagenase-cleavage of type II collagen using a neoepitope ELISA. J. Immunol. Methods 247, 25–34 (2001).

    Article  CAS  Google Scholar 

  20. Clark-Lewis, I., Dewald, B., Loetscher, M., Moser, B. & Baggiolini, M. Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J. Biol. Chem. 269, 16075–16081 (1994).

    CAS  PubMed  Google Scholar 

  21. Baldwin, E.T. et al. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc. Natl. Acad. Sci. USA 88, 502–506 (1991).

    Article  CAS  Google Scholar 

  22. Lee, Y.C. et al. NMR conformational analysis of cis and trans proline isomers in the neutrophil chemoattractant, N-acetyl-proline-glycine-proline. Biopolymers 58, 548–561 (2001).

    Article  CAS  Google Scholar 

  23. Jones, S.A., Wolf, M., Qin, S., Mackay, C.R. & Baggiolini, M. Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc. Natl. Acad. Sci. USA 93, 6682–6686 (1996).

    Article  CAS  Google Scholar 

  24. Feniger-Barish, R., Yron, I., Meshel, T., Matityahu, E. & Ben-Baruch, A. IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry 42, 2874–2886 (2003).

    Article  CAS  Google Scholar 

  25. Rennard, S.I. et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J. Appl. Physiol. 60, 532–538 (1986).

    Article  CAS  Google Scholar 

  26. Otterness, I.G. et al. Detection of collagenase-induced damage of collagen by 9A4, a monoclonal C-terminal neoepitope antibody. Matrix Biol. 18, 331–341 (1999).

    Article  CAS  Google Scholar 

  27. Shapiro, S.D. et al. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 163, 2329–2335 (2003).

    Article  CAS  Google Scholar 

  28. Pfister, R.R., Haddox, J.L., Lam, K.W. & Lank, K.M. Preliminary characterization of a polymorphonuclear leukocyte stimulant isolated from alkali-treated collagen. Invest. Ophthalmol. Vis. Sci. 29, 955–962 (1988).

    CAS  PubMed  Google Scholar 

  29. Belvisi, M.G. & Bottomley, K.M. The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflamm Res. 52, 95–100 (2003).

    Article  CAS  Google Scholar 

  30. Churg, A. et al. Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am. J. Respir. Cell Mol. Biol. 27, 368–374 (2002).

    Article  CAS  Google Scholar 

  31. Hautamaki, R.D., Kobayashi, D.K., Senior, R.M. & Shapiro, S.D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  Google Scholar 

  32. Clark-Lewis, I. et al. Structure-activity relationships of chemokines. J. Leukoc. Biol. 57, 703–711 (1995).

    Article  CAS  Google Scholar 

  33. Adair-Kirk, T.L. et al. A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J. Immunol. 171, 398–406 (2003).

    Article  CAS  Google Scholar 

  34. Tomkinson, A. et al. A murine IL-4 receptor antagonist that inhibits IL-4- and IL-13-induced responses prevents antigen-induced airway eosinophilia and airway hyperresponsiveness. J. Immunol. 166, 5792–5800 (2001).

    Article  CAS  Google Scholar 

  35. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  CAS  Google Scholar 

  36. Goodman, L.S., Hardman, J.G., Limbird, L.E. & Gilman, A.G. Goodman & Gilman's The Pharmacological Basis of Therapeutics, 10th Ed. (McGraw-Hill, New York, 2001).

    Google Scholar 

  37. Beeh, K.M. et al. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 123, 1240–1247 (2003).

    Article  CAS  Google Scholar 

  38. Haddox, J.L. et al. Bioactivity of peptide analogs of the neutrophil chemoattractant, N-acetyl-proline-glycine-proline. Invest. Ophthalmol. Vis. Sci. 40, 2427–2429 (1999).

    CAS  PubMed  Google Scholar 

  39. Horvath, I., Hunt, J. & Barnes, P.J. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur. Respir. J. 26, 523–548 (2005).

    Article  CAS  Google Scholar 

  40. Mahler, D.A., Huang, S., Tabrizi, M. & Bell, G.M. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest 126, 926–934 (2004).

    Article  CAS  Google Scholar 

  41. Turino, G.M. The origins of a concept: the protease-antiprotease imbalance hypothesis. Chest 122, 1058–1060 (2002).

    Article  Google Scholar 

  42. Senior, R.M. & Anthonisen, N.R. Chronic obstructive pulmonary disease (COPD). Am. J. Respir. Crit. Care Med. 157, S139–S147 (1998).

    Article  CAS  Google Scholar 

  43. Vernooy, J.H., Dentener, M.A., van Suylen, R.J., Buurman, W.A. & Wouters, E.F. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am. J. Respir. Cell Mol. Biol. 26, 152–159 (2002).

    Article  CAS  Google Scholar 

  44. Nishimura, T. et al. Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation 108, 1640–1645 (2003).

    Article  CAS  Google Scholar 

  45. Collins, S.J., Ruscetti, F.W., Gallagher, R.E. & Gallo, R.C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl. Acad. Sci. USA 75, 2458–2462 (1978).

    Article  CAS  Google Scholar 

  46. Boxio, R., Bossenmeyer-Pourie, C., Steinckwich, N., Dournon, C. & Nusse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 75, 604–611 (2004).

    Article  CAS  Google Scholar 

  47. Miller, A.P. et al. Estrogen modulates inflammatory mediator expression and neutrophil chemotaxis in injured arteries. Circulation 110, 1664–1669 (2004).

    Article  CAS  Google Scholar 

  48. Wymann, M.P., von Tscharner, V., Deranleau, D.A. & Baggiolini, M. Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst. Anal. Biochem. 165, 371–378 (1987).

    Article  CAS  Google Scholar 

  49. Lagasse, E. & Weissman, I.L. Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Methods 197, 139–150 (1996).

    Article  CAS  Google Scholar 

  50. Clark-Lewis, I., Schumacher, C., Baggiolini, M. & Moser, B. Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J. Biol. Chem. 266, 23128–23134 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge J. Downs (Pfizer Inc.) for the gift of the 9A4 monoclonal antibody, the laboratory of J. Oppenheim (US National Institutes of Health) for providing the CXCR-transfected cells, and P. O'Reilley, W. Bailey and K. Young for advice. We thank S. Parker of the University of Alabama at Birmingham (UAB) Core Facility for Collection, Processing and Storage of Alveolar Fluid for clinical samples and the UAB Mass Spectrometry Core Facility for sample analysis. This work was supported by US National Institutes of Health grants HL68806 (to J.E.B.), T32HL007553 (to B.D.N.), T32 GM63490 (to B.D.N.), T32 GM008361 (to N.M.W.) and F30 ES13874 (to N.M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Edwin Blalock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PGP is chemotactic rather than chemokinetic, whereas the IL-8–derived peptide SGP chemotactic at similar concentrations; PGP causes PMN superoxide production, and competitively binds CXCR1 and CXCR2. (PDF 784 kb)

Supplementary Fig. 2

Identification and quantification of PGP (shown as N-a-PGP here) in the BAL fluids of LPS-treated mice. (PDF 1501 kb)

Supplementary Fig. 3

PGP is cleared rapidly from airway fluid, is inhibited by monoclonal antibody 9A4, and causes alveolar enlargement and right ventricular hypertrophy in BALB/c mice. (PDF 716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weathington, N., van Houwelingen, A., Noerager, B. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12, 317–323 (2006). https://doi.org/10.1038/nm1361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing