Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas

Abstract

The nature and even existence of adult pancreatic endocrine stem or progenitor cells is a subject of controversy in the field of beta-cell replacement for diabetes. One place to search for such cells is in the nonendocrine fraction of cells that remain after islet isolation, which consist of a mixture of epithelia and mesenchyme. Culture in G418 resulted in elimination of the mesenchymal cells, leaving a highly purified population of nonendocrine pancreatic epithelial cells (NEPECs). To evaluate their differentiation potential, NEPECs were heritably marked and transplanted under the kidney capsule of immunodeficient mice. When cotransplanted with fetal pancreatic cells, NEPECs were capable of endocrine differentiation. We found no evidence of beta-cell replication or cell fusion that could have explained the appearance of insulin positive cells from a source other than NEPECs. Nonendocrine-to-endocrine differentiation of NEPECs supports the existence of endocrine stem or progenitor cells within the epithelial compartment of the adult human pancreas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of NEPCs (a) and cultured human pancreatic islets (b).
Figure 2: Characterization of transplanted NEPC clusters.
Figure 3: Effect of monolayer culture and G418 treatment on NEPCs.
Figure 4: Monolayer culture induces nestin expression in NEPECs.
Figure 5: Insulin expression in NEPECs cotransplanted with ICCs.
Figure 6: NEPECs undergo reversal of epithelial-to-mesenchymal transition and express other pancreatic markers after cotransplantation with ICCs.

Similar content being viewed by others

References

  1. Shapiro, A.M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hirshberg, B. et al. Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience. Diabetes Care 26, 3288–3295 (2003).

    Article  PubMed  Google Scholar 

  3. Bonner-Weir, S., Baxter, L.A., Schuppin, G.T. & Smith, F.E. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42, 1715–1720 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Guz, Y., Nasir, I. & Teitelman, G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 142, 4956–4968 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Sarvetnick, N.E. & Gu, D. Regeneration of pancreatic endocrine cells in interferon-gamma transgenic mice. Adv. Exp. Med. Biol. 321, 85–89 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97, 7999–8004 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lardon, J., Huyens, N., Rooman, I. & Bouwens, L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch. 444, 61–65 (2004).

    Article  PubMed  Google Scholar 

  9. Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Lechner, A., Leech, C.A., Abraham, E.J., Nolan, A.L. & Habener, J.F. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem. Biophys. Res. Commun. 293, 670–674 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Abraham, E.J., Leech, C.A., Lin, J.C., Zulewski, H. & Habener, J.F. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 143, 3152–3161 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I. & Melton, D.A. Insulin staining of ES cell progeny from insulin uptake. Science 299, 363 (2003).

    Article  PubMed  Google Scholar 

  13. Levine, F. & Mercola, M. No pancreatic endocrine stem cells? N. Engl. J. Med. 351, 1024–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Scharfmann, R. Control of early development of the pancreas in rodents and humans: implications of signals from the mesenchyme. Diabetologia 43, 1083–1092 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Beattie, G.M. et al. Acid beta-galactosidase: a developmentally regulated marker of endocrine cell precursors in the human fetal pancreas. J. Clin. Endocrinol. Metab. 78, 1232–1240 (1994).

    CAS  PubMed  Google Scholar 

  16. Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn. 229, 176–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tuch, B.E., Ng, A.B., Jones, A. & Turtle, J.R. Histologic differentiation of human fetal pancreatic explants transplanted into nude mice. Diabetes 33, 1180–1187 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Sandler, S. et al. Tissue culture of human fetal pancreas. Effects of human serum on development and endocrine function of isletlike cell clusters. Diabetes 36, 1401–1407 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, R., Ustinov, J., Korsgren, O. & Otonkoski, T. In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia 48, 2296–2304 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Gao, R. et al. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52, 2007–2015 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Heimberg, H. et al. Adult human pancreatic duct and islet cells exhibit similarities in expression and differences in phosphorylation and complex formation of the homeodomain protein Ipf-1. Diabetes 49, 571–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Heremans, Y. et al. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol. 159, 303–312 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouwens, L., Lu, W.G. & De Krijger, R. Proliferation and differentiation in the human fetal endocrine pancreas. Diabetologia 40, 398–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Street, C.N. et al. Enriched human pancreatic ductal cultures obtained from selective death of acinar cells express pancreatic and duodenal homeobox gene-1 age-dependently. The Review of Diabetic Studies 1, 66–79 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bogdani, M. et al. Formation of insulin-positive cells in implants of human pancreatic duct cell preparations from young donors. Diabetologia 46, 830–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Halban, P.A. Cellular sources of new pancreatic beta cells and therapeutic implications for regenerative medicine. Nat. Cell Biol. 6, 1021–1025 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Halaban, R. & Alfano, F.D. Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro 20, 447–450 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Klein, T. et al. Nestin is expressed in vascular endothelial cells in the adult human pancreas. J. Histochem. Cytochem. 51, 697–706 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lardon, J., Rooman, I. & Bouwens, L. Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem. Cell Biol. 117, 535–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Humphrey, R.K. et al. Characterization and isolation of promoter-defined nestin-positive cells from the human fetal pancreas. Diabetes 52, 2519–2525 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Esni, F., Stoffers, D.A., Takeuchi, T. & Leach, S.D. Origin of exocrine pancreatic cells from nestin-positive precursors in developing mouse pancreas. Mech. Dev. 121, 15–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Delacour, A., Nepote, V., Trumpp, A. & Herrera, P.L. Nestin expression in pancreatic exocrine cell lineages. Mech. Dev. 121, 3–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Leibowitz, G. et al. Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes 48, 745–753 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Lechner, A. et al. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53, 616–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wurmser, A.E. & Gage, F.H. Stem cells: cell fusion causes confusion. Nature 416, 485–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wurmser, A.E. et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Boyer, B., Tucker, G.C., Valles, A.M., Franke, W.W. & Thiery, J.P. Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J. Cell Biol. 109, 1495–1509 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Gershengorn, M.C. et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Halvorsen, T.L., Beattie, G.M., Lopez, A.D., Hayek, A. & Levine, F. Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J. Endocrinol. 166, 103–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Finegood, D.T., Scaglia, L. & Bonner-Weir, S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44, 249–256 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Tyrberg, B., Andersson, A. & Borg, L.A. Species differences in susceptibility of transplanted and cultured pancreatic islets to the β-cell toxin alloxan. Gen. Comp. Endocrinol. 122, 238–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Butler, A.E. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Beattie, G.M., Rubin, J.S., Mally, M.I., Otonkoski, T. & Hayek, A. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes 45, 1223–1228 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, S. et al. Isolation and characterization of a cell line from the epithelial cells of the human fetal pancreas. Cell Transplant. 6, 59–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Beattie, G.M., Butler, C. & Hayek, A. Morphology and function of cultured human fetal pancreatic cells transplanted into athymic mice: a longitudinal study. Cell Transplant. 3, 421–425 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the islet isolation centers in Edmonton, Seattle, Minnesota and the Whittier Institute for providing human islets and nonendocrine cells, and C. Wright, O. Madsen, M. Magnuson and J. Hutton for providing antibodies and for discussions. We thank R. Bajpai for discussion and virus preparation. This work was funded by grants from the US National Institute of Diabetes and Digestive and Kidney Diseases and the Juvenile Diabetes Research Foundation (to F.L., M.M. and J.R.T.L.), the Beta Cell Biology Consortium (to F.L.) and the Larry L. Hillblom Foundation (to B.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Levine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Insulin staining of NEPCs before and after transplantation. (PDF 297 kb)

Supplementary Fig. 2

Characterization of NEPECs. (PDF 243 kb)

Supplementary Fig. 3

Proliferation of adult and fetal cells. (PDF 356 kb)

Supplementary Fig. 4

Lentiviral infections. (PDF 356 kb)

Supplementary Fig. 5

Additional analyses of NEPEC/ICC transplants. (PDF 291 kb)

Supplementary Fig. 6

Confocal sectioning of NEPECs after transplantation with ICCs. (PDF 431 kb)

Supplementary Fig. 7

Detection of fusion between NEPECs and fetal cells. (PDF 139 kb)

Supplementary Methods (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, E., Tyrberg, B., Itkin-Ansari, P. et al. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat Med 12, 310–316 (2006). https://doi.org/10.1038/nm1367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing