Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Exogenous control of mammalian gene expression via modulation of translational termination

Abstract

Here, we describe a system for the exogenous control of gene expression in mammalian cells that relies on the control of translational termination. To achieve gene regulation, we modified protein-coding sequences by introduction of a translational termination codon just downstream from the initiator AUG codon. Translation of the resulting mRNA leads to potent reduction in expression of the desired gene product. Expression of the gene product can be controlled by treating cells that express the mRNA with either aminoglycoside antibiotics or several nonantibiotic compounds. We show that the extent of regulation of gene expression can be substantial (60-fold) and that regulation can be achieved in the case of a variety of different genes, in different cultured cell lines and in primary cells in vivo. This gene regulation strategy offers significant advantages over existing methods for controlling gene expression and should have both immediate experimental application and possible clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design features of translation-based system for gene regulation.
Figure 2: Aminoglycoside-induced suppression of translational termination can be used to regulate gene expression in cultured cells.
Figure 3: Other aminoglycosides and nonantibiotic compounds can be used to regulate gene expression via suppression of nonsense mutations.
Figure 4: In vivo regulation of gene expression in mouse lungs and mouse hematopoietic cells.

Similar content being viewed by others

References

  1. Gossen, M., Bonin, A.L., Freundlieb, S. & Bujard, H. Inducible gene expression systems for higher eukaryotic cells. Curr. Opin. Biotechnol. 5, 516–520 (1994).

    Article  CAS  Google Scholar 

  2. Wang, Y., O'Malley, B.W., Jr., Tsai, S.Y. & O'Malley, B.W. A regulatory system for use in gene transfer. Proc. Natl. Acad. Sci. USA 91, 8180–8184 (1994).

    Article  CAS  Google Scholar 

  3. Rivera, V.M. et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 105, 1424–1430 (2005).

    Article  CAS  Google Scholar 

  4. Suhr, S.T., Gil, E.B., Senut, M.C. & Gage, F.H. High level transactivation by a modified Bombyx ecdysone receptor in mammalian cells without exogenous retinoid X receptor. Proc. Natl. Acad. Sci. USA 95, 7999–8004 (1998).

    Article  CAS  Google Scholar 

  5. McManus, M.T. & Sharp, P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747 (2002).

    Article  CAS  Google Scholar 

  6. Yen, L. et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431, 471–476 (2004).

    Article  CAS  Google Scholar 

  7. Burke, J.F. & Mogg, A.E. Suppression of a nonsense mutation in mammalian cells in vivo by the aminoglycoside antibiotics G-418 and paromomycin. Nucleic Acids Res. 13, 6265–6272 (1985).

    Article  CAS  Google Scholar 

  8. Martin, R., Mogg, A.E., Heywood, L.A., Nitschke, L. & Burke, J.F. Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol. Gen. Genet. 217, 411–418 (1989).

    Article  CAS  Google Scholar 

  9. Barton-Davis, E.R., Cordier, L., Shoturma, D.I., Leland, S.E. & Sweeney, H.L. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest. 104, 375–381 (1999).

    Article  CAS  Google Scholar 

  10. Howard, M.T. et al. Sequence specificity of aminoglycoside-induced stop codon read-through: potential implications for treatment of Duchenne muscular dystrophy. Ann. Neurol. 48, 164–169 (2000).

    Article  CAS  Google Scholar 

  11. Sangkuhl, K. et al. Aminoglycoside-mediated rescue of a disease-causing nonsense mutation in the V2 vasopressin receptor gene in vitro and in vivo. Hum. Mol. Genet. 13, 893–903 (2004).

    Article  CAS  Google Scholar 

  12. Wilschanski, M. et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441 (2003).

    Article  CAS  Google Scholar 

  13. Loebenberg, D., Counels, M. & Waitz, J.A. Antibiotic G418, a new micrommomospora-produced aminglycoside with activity against protozoa and helminths: antiparasitic activity. Antimicrob. Agents Chemother. 7, 811–815 (1975).

    Article  CAS  Google Scholar 

  14. Rammensee, H.G., Falk, K. & Rotzschke, O. Peptides naturally presented by MHC class I molecules. Annu. Rev. Immunol. 11, 213–244 (1993).

    Article  CAS  Google Scholar 

  15. Parrott, C.L., Alsayed, N., Rebourcet, R. & Santamarina-Fojo, S. ApoC-IIParis2: a premature termination mutation in the signal peptide of apoC-II resulting in the familial chylomicronemia syndrome. J. Lipid Res. 33, 361–367 (1992).

    CAS  PubMed  Google Scholar 

  16. Ory, D.S., Neugeboren, B.A. & Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406 (1996).

    Article  CAS  Google Scholar 

  17. International patent application WO 2004/009533 A1.

  18. Brown, C.M., Stockwell, P.A., Trotman, C.N. & Tate, W.P. Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res. 18, 6339–6345 (1990).

    Article  CAS  Google Scholar 

  19. McCaughan, K.K., Brown, C.M., Dalphin, M.E., Berry, M.J. & Tate, W.P. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc. Natl. Acad. Sci. USA 92, 5431–5435 (1995).

    Article  CAS  Google Scholar 

  20. Contag, C.H. & Bachmann, M.H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

    Article  CAS  Google Scholar 

  21. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S. & Mulligan, R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  Google Scholar 

  22. Nilsson, M. & Ryden-Aulin, M. Glutamine is incorporated at the nonsense codons UAG and UAA in a suppressor-free Escherichia coli strain. Biochim. Biophys. Acta 1627, 1–6 (2003).

    Article  CAS  Google Scholar 

  23. Rothman, J.E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  CAS  Google Scholar 

  24. Peabody, D.S. & Berg, P. Termination-reinitiation occurs in the translation of mammalian cell mRNAs. Mol. Cell. Biol. 6, 2695–2703 (1986).

    Article  CAS  Google Scholar 

  25. Lai, C.H. et al. Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc. Natl. Acad. Sci. USA 101, 15676–15681 (2004).

    Article  CAS  Google Scholar 

  26. Kahlmeter, G. & Dahlager, J.I. Aminoglycoside toxicity - a review of clinical studies published between 1975 and 1982. J. Antimicrob. Chemother. 13 Suppl A, 9–22 (1984).

    Article  Google Scholar 

  27. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  Google Scholar 

  28. Ainsworth, C. Nonsense mutations: running the red light. Nature 438, 726–728 (2005).

    Article  CAS  Google Scholar 

  29. Zufferey, R., Donello, J.E., Trono, D. & Hope, T.J. Woodchuck hepatitis virus post-transcriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mostoslavsky, G. et al. Efficiency of transduction of highly purified murine hematopoietic stem cells by lentiviral and oncoretroviral vectors under conditions of minimal in vitro manipulation. Mol. Ther. 11, 932–940 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grant 5PO-HL54785 (to R.C.M.) and by a grant from L'Association Francaise contre les Myopathies (AFM). We thank J. Mulligan for preparation of the artwork used in the figures, P. Russell for technical assistance and A. Balazs for helpful discussions. We particularly acknowledge early discussions with J. Leiden and L. Sweeney regarding the possibility of applying aminoglycoside suppression of nonsense codons to the development of gene regulation systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C Mulligan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, G., Mostoslavsky, G., Kotton, D. et al. Exogenous control of mammalian gene expression via modulation of translational termination. Nat Med 12, 1093–1099 (2006). https://doi.org/10.1038/nm1376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing