Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF

Abstract

Advanced breast cancers frequently metastasize to bone, resulting in osteolytic lesions, yet the underlying mechanisms are poorly understood. Here we report that nuclear factor–κB (NF-κB) plays a crucial role in the osteolytic bone metastasis of breast cancer by stimulating osteoclastogenesis. Using an in vivo bone metastasis model, we found that constitutive NF-κB activity in breast cancer cells is crucial for the bone resorption characteristic of osteolytic bone metastasis. We identified the gene encoding granulocyte macrophage–colony stimulating factor (GM-CSF) as a key target of NF-κB and found that it mediates osteolytic bone metastasis of breast cancer by stimulating osteoclast development. Moreover, we observed that the expression of GM-CSF correlated with NF-κB activation in bone-metastatic tumor tissues from individuals with breast cancer. These results uncover a new and specific role of NF-κB in osteolytic bone metastasis through GM-CSF induction, suggesting that NF-κB is a potential target for the treatment of breast cancer and the prevention of skeletal metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blocking NF-κB inhibits osteolytic bone metastasis of breast cancer in vivo.
Figure 2: Inhibition of breast cancer bone metastasis by IKK2 inhibitors in vivo.
Figure 3: NF-κB-induced CSF2 in breast cancer cells promotes breast cancer bone metastasis in vivo.
Figure 4: GM-CSF is crucial for breast cancer bone metastasis induced by NF-κB in vivo.
Figure 5: Constitutive NF-κB activities in breast cancer cells stimulated osteoclast formation through GM-CSF in vitro.
Figure 6: NF-κB directly stimulates osteoclast formation and promotes bone-metastatic tumor growth in vivo through GM-CSF.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Roodman, G.D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    Article  CAS  Google Scholar 

  2. Mundy, G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    Article  CAS  Google Scholar 

  3. Javed, A. et al. Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc. Natl. Acad. Sci. USA 102, 1454–1459 (2005).

    Article  CAS  Google Scholar 

  4. Kozlow, W. & Guise, T.A. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J. Mammary Gland Biol. Neoplasia 10, 169–180 (2005).

    Article  Google Scholar 

  5. Zhang, J. et al. Osteoprotegerin inhibits prostate cancer–induced osteoclastogenesis and prevents prostate tumor growth in the bone. J. Clin. Invest. 107, 1235–1244 (2001).

    Article  CAS  Google Scholar 

  6. Martin, T.J. Paracrine regulation of osteoclast formation and activity: milestones in discovery. J. Musculoskelet. Neuronal Interact. 4, 243–253 (2004).

    CAS  PubMed  Google Scholar 

  7. Fidler, I.J. Critical determinants of metastasis. Semin. Cancer Biol. 12, 89–96 (2002).

    Article  Google Scholar 

  8. Chambers, A.F., Groom, A.C. & MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  9. Huang, S., Pettaway, C.A., Uehara, H., Bucana, C.D. & Fidler, I.J. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20, 4188–4197 (2001).

    Article  CAS  Google Scholar 

  10. Huber, M.A. et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004).

    Article  CAS  Google Scholar 

  11. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  Google Scholar 

  12. Guise, T.A. et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest. 98, 1544–1549 (1996).

    Article  CAS  Google Scholar 

  13. Yin, J.J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    Article  CAS  Google Scholar 

  14. Sovak, M.A. et al. Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100, 2952–2960 (1997).

    Article  CAS  Google Scholar 

  15. Hu, M.C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  Google Scholar 

  16. Eddy, S.F. et al. Inducible IκB kinase/IκB kinase ε expression is induced by CK2 and promotes aberrant nuclear factor-κB activation in breast cancer cells. Cancer Res. 65, 11375–11383 (2005).

    Article  CAS  Google Scholar 

  17. Cailleau, R., Young, R., Olive, M. & Reeves, W.J., Jr. Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst. 53, 661–674 (1974).

    Article  CAS  Google Scholar 

  18. Wang, C.-Y., Mayo, M.W. & Baldwin, A.S. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).

    Article  CAS  Google Scholar 

  19. Wang, C.-Y., Mayo, M.W., Korneluk, R.C., Goeddel, D.V. & Baldwin, A.S. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    Article  CAS  Google Scholar 

  20. Wang, C.-Y., Cusack, J., Liu, R. & Baldwin, A.S. Control of inducible chemoresistance: enhanced anti-tumor therapy via increased apoptosis through inhibition of NF-κB. Nat. Med. 5, 412–417 (1999).

    Article  Google Scholar 

  21. Baxter, A. et al. Hit-to-lead studies: the discovery of potent, orally active, thiophenecarboxamide IKK-2 inhibitors. Bioorg. Med. Chem. Lett. 14, 2817–2822 (2004).

    Article  CAS  Google Scholar 

  22. Mayo, M.W. & Baldwin, A.S. The transcription factor NF-κB: control of oncogenesis and cancer therapy resistance. Biochim. Biophys. Acta 1470, M55–M62 (2000).

    CAS  Google Scholar 

  23. Greten, F.R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  Google Scholar 

  24. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11–22 (2004).

    Article  CAS  Google Scholar 

  25. Yoneda, T. & Hiraga, T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem. BioPhys. Res. Commun. 328, 679–687 (2005).

    Article  CAS  Google Scholar 

  26. Jones, D.H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    Article  CAS  Google Scholar 

  27. Hamilton, J.A. GM-CSF in inflammation and autoimmunity. Trends Immunol. 23, 403–408 (2002).

    Article  CAS  Google Scholar 

  28. Hodge, J.M. et al. Osteoclastic potential of human CFU-GM: biophasic effect of GM-CSF. J. Bone Miner. Res. 19, 190–199 (2004).

    Article  CAS  Google Scholar 

  29. MacDonald, B.R. et al. Effects of human recombinant CSF-GM and highly purified CSF-1 on the formation of multinucleated cells with osteoclast characteristics in long-term bone marrow cultures. J. Bone Miner. Res. 1, 227–233 (1986).

    Article  CAS  Google Scholar 

  30. Menaa, C. et al. Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J. Clin. Invest. 103, 1605–1613 (1999).

    Article  CAS  Google Scholar 

  31. Myint, Y.Y. et al. Granulocyte/macrophage colony-stimulating factor and interleukin-3 correct osteopetrosis in mice with osteopetrosis mutation. Am. J. Pathol. 154, 553–566 (1999).

    Article  CAS  Google Scholar 

  32. Li, F. et al. Annexin II stimulates RANKL expression through MAPK. J. Bone Miner. Res. 20, 1161–1167 (2005).

    Article  CAS  Google Scholar 

  33. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  Google Scholar 

  34. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  35. Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  36. Horak, C.E. & Steeg, P.S. Metastasis gets site specific. Cancer Cell 8, 93–95 (2005).

    Article  CAS  Google Scholar 

  37. Jimi, E. et al. Selective inhibition of NF-κB blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10, 617–624 (2004).

    Article  CAS  Google Scholar 

  38. Ruocco, M.G. et al. IκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J. Exp. Med. 201, 1677–1687 (2005).

    Article  CAS  Google Scholar 

  39. Morgan, H., Tumber, A. & Hill, P.A. Breast cancer cells induce osteoclast formation by stimulating host IL-11 production and downregulating granulocyte/macrophage colony-stimulating factor. Int. J. Cancer 109, 653–660 (2004).

    Article  CAS  Google Scholar 

  40. Luo, J.L., Maeda, S., Hsu, L.C., Yagita, H. & Karin, M. Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305 (2004).

    Article  CAS  Google Scholar 

  41. Queen, M.M., Ryan, R.E., Holzer, R.G., Keller-Peck, C.R. & Jorcyk, C.L. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res. 65, 8896–8904 (2005).

    Article  CAS  Google Scholar 

  42. Lin, A. & Karin, M. NF-κB in cancer: a marked target. Semin. Cancer Biol. 13, 107–114 (2003).

    Article  CAS  Google Scholar 

  43. Condeelis, J. & Pollard, J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    Article  CAS  Google Scholar 

  44. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  45. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    Article  CAS  Google Scholar 

  46. Zeng, Q. et al. Crosstalk between tumor and endothelial cells promotes angiogenesis through MAPK activation of Notch. Cancer Cell 8, 13–23 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Baldwin and D. Guttridge for discussion, T. Guise (University of Virginia) for providing breast cancer cells, and E. Tang, D. Saims, A. Rehman and R. Franceschi for their comments on the manuscript. This study was supported by the US National Institutes of Health (grants DE015618, CA100849 and CA093900).

Author information

Authors and Affiliations

Authors

Contributions

B.K.P., S.C. and C.-Y.W. designed and organized the experiments, performed the animal studies, analyzed the data; generated the figures and wrote the manuscript. H.Z. performed the subcloning. Q.Z., T.G., K.G., V.S., L.P. and R.J.Z. conducted the histological analysis. J.D., S.S., E.T.K. and L.M. performed the animal studies and wrote the manuscript.

Corresponding author

Correspondence to Cun-Yu Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Constitutive NF-κB in breast cancer cells inhibits tumor growth. (PDF 252 kb)

Supplementary Fig. 2

The IKK2 inhibitor VI suppresses subcutaneous tumor growth in vivo. MDA-MB-231 cells (1 × 106) were injected into nude mice subcutaneously and treated with the IKK2 inhibitor VI for 3 weeks, then tumor sizes were measured. (PDF 86 kb)

Supplementary Fig. 3

NF-κB promotes cell invasion in vitro. (PDF 135 kb)

Supplementary Fig. 4

GM-CSF does not activate tumor cells through an antocrine mechanism. (PDF 214 kb)

Supplementary Fig. 5

GM-CSF is highly expressed in bone-metastatic breast tumors from human patients. (PDF 316 kb)

Supplementary Fig. 6

The inhibition of GM-CSF function did not affect tumor cell proliferation. (PDF 43 kb)

Supplementary Fig. 7

GM-CSF-specific antibodies inhibit breast cancer metastasis to bone. (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, B., Zhang, H., Zeng, Q. et al. NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13, 62–69 (2007). https://doi.org/10.1038/nm1519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1519

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing