Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MicroRNA-133 controls cardiac hypertrophy

Abstract

Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy. In vitro overexpression of miR-133 or miR-1 inhibited cardiac hypertrophy. In contrast, suppression of miR-133 by 'decoy' sequences induced hypertrophy, which was more pronounced than that after stimulation with conventional inducers of hypertrophy. In vivo inhibition of miR-133 by a single infusion of an antagomir caused marked and sustained cardiac hypertrophy. We identified specific targets of miR-133: RhoA, a GDP-GTP exchange protein regulating cardiac hypertrophy; Cdc42, a signal transduction kinase implicated in hypertrophy; and Nelf-A/WHSC2, a nuclear factor involved in cardiogenesis. Our data show that miR-133, and possibly miR-1, are key regulators of cardiac hypertrophy, suggesting their therapeutic application in heart disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-133 expression in cardiac hypertrophy.
Figure 2: Infection of neonatal cardiac myocytes with Ad133 and AdDecoy.
Figure 3: In vivo effects of antagomir-133 administration on cardiac hypertrophy.
Figure 4: Analysis of the miR-133 target genes Rhoa and Cdc42.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. Xu, P., Guo, M. & Hay, B.A. MicroRNAs and the regulation of cell death. Trends Genet. 20, 617–624 (2004).

    Article  CAS  Google Scholar 

  3. Cheng, A.M., Byrom, M.W., Shelton, J. & Ford, L.P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297 (2005).

    Article  CAS  Google Scholar 

  4. Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 102, 18081–18086 (2005).

    Article  CAS  Google Scholar 

  5. Dresios, J. et al. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc. Natl. Acad. Sci. USA 102, 1865–1870 (2005).

    Article  CAS  Google Scholar 

  6. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  Google Scholar 

  7. Esquela-Kerscher, A. & Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  8. McKinsey, T.A. & Olson, E.N. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J. Clin. Invest. 115, 538–546 (2005).

    Article  CAS  Google Scholar 

  9. Chen, J.F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  Google Scholar 

  10. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 103, 18255–18260 (2006).

    Article  CAS  Google Scholar 

  11. Condorelli, G. et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 12333–12338 (2002).

    Article  CAS  Google Scholar 

  12. Dorn, G.W., II, Robbins, J. & Sugden, P.H. Phenotyping hypertrophy: eschew obfuscation. Circ. Res. 92, 1171–1175 (2003).

    Article  CAS  Google Scholar 

  13. Shiojima, I. & Walsh, K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 20, 3347–3365 (2006).

    Article  CAS  Google Scholar 

  14. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with antagomirs. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  15. Iwatate, M. et al. In vivo high-efficiency transcoronary gene delivery and Cre-LoxP gene switching in the adult mouse heart. Gene Ther. 10, 1814–1820 (2003).

    Article  CAS  Google Scholar 

  16. Brown, J.H. et al. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ. Res. 98, 730–742 (2006).

    Article  CAS  Google Scholar 

  17. Nagai, T. et al. Cdc42 plays a critical role in assembly of sarcomere units in series of cardiac myocytes. Biochem. Biophys. Res. Commun. 305, 806–810 (2003).

    Article  CAS  Google Scholar 

  18. Bergemann, A.D., Cole, F. & Hirschhorn, K. The etiology of Wolf-Hirschhorn syndrome. Trends Genet. 21, 188–195 (2005).

    Article  CAS  Google Scholar 

  19. Lin, H. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  Google Scholar 

  20. Stark, A. et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  21. Sayed, D., Hong, C., Chen, I.Y., Lypowy, J. & Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007).

    Article  CAS  Google Scholar 

  22. Rao, P.K. et al. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. USA 103, 8721–8726 (2006).

    Article  CAS  Google Scholar 

  23. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPa regulates human granulopoiesis. Cell 123, 819–831 (2005).

    Article  CAS  Google Scholar 

  24. Kattman, S.J. et al. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial and vascular smooth muscle lineages. Dev. Cell 11, 723–732 (2006).

    Article  CAS  Google Scholar 

  25. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  Google Scholar 

  26. Kwon, C., Han, Z., Olson, E.N. & Srivastava, D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc. Natl. Acad. Sci. USA 102, 18986–18991 (2005).

    Article  CAS  Google Scholar 

  27. Rockman, H.A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 88, 8277–8281 (1991).

    Article  CAS  Google Scholar 

  28. Wisløff, U. et al. Intensity-controlled treadmill running in rats: VO(2 max) and cardiac hypertrophy. Am. J. Physiol. 280, H1301–H1310 (2001).

    Google Scholar 

  29. Ikeda, Y. et al. Simian immunodeficiency virus-based lentivirus vector for retinal gene transfer: a preclinical safety study in adult rats. Gene Ther. 10, 1161–1169 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Blasi, M. Fontana and V. Michetti for editorial assistance, and G. Loreto for graphics. This work was supported by grants from the US National Institutes of Health (HL078797-01A1 to G.C., HLO65484 to P.R.-L. and 1R01HL63168 to C.P.), the Marie Curie Outgoing Fellowship 6th European Framework Programme (D.C.), EUGeneHeart (LSHM-CT-2005-018833 to G.C.), the Italian Ministry of Scientific Research (G.C. and C.P.), the Italian Ministry of Health (C.P. and G.C.) and the Italy-USA miR Oncology Program, Istituto Superiore di Sanità, Rome (C.P.).

Author information

Authors and Affiliations

Authors

Contributions

D.C., A.C., D.B., F.F., A.A., M.V.G.L., P.S., M.-L.B. and L.E. conducted the in vitro and in vivo experiments. D.C. and P.R-L. performed the assessment of miRNAs in mouse cardiac development. P.G., Y.G., N.D.D., G.W.D., Ø.E. and K.L.P. performed the in vivo models of cardiac hypertrophy. C.A. and M.A.R. collected human samples. C.M.C. conducted the miRNA microarray analysis. A.C., D.C., C.P. and G.C. planned the experiments. D.C., A.C., M.-L.B., P.R.-L., C.P. and G.C. wrote the manuscript. C.P. and G.C. were responsible for research coordination and strategy.

Corresponding authors

Correspondence to Cesare Peschle or Gianluigi Condorelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

MiR-133 and miR-1 expression in fetal and adult tissues. (PDF 335 kb)

Supplementary Fig. 2

MiR-1 expression in cardiac hypertrophy. (PDF 1273 kb)

Supplementary Fig. 3

Morphological analysis of mock, Ad133 or AdDecoy infected adult CMs. (PDF 239 kb)

Supplementary Fig. 4

In vivo effects of AdDecoy and Ad133 on cardiac hypertrophy. (PDF 101 kb)

Supplementary Fig. 5

Identification of miR-133 target genes: RhoA and Cdc42. (PDF 126 kb)

Supplementary Fig. 6

Identification of miR-133 target genes: Nelf-A/WHSC2. (PDF 760 kb)

Supplementary Table 1

Echocardiographic assessment in wt and Akt Tg mice in basal condition and after pressure overload stimuli (PDF 21 kb)

Supplementary Methods (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carè, A., Catalucci, D., Felicetti, F. et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 13, 613–618 (2007). https://doi.org/10.1038/nm1582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing