Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinaldehyde represses adipogenesis and diet-induced obesity

Abstract

The metabolism of vitamin A and the diverse effects of its metabolites are tightly controlled by distinct retinoid-generating enzymes, retinoid-binding proteins and retinoid-activated nuclear receptors. Retinoic acid regulates differentiation and metabolism by activating the retinoic acid receptor and retinoid X receptor (RXR), indirectly influencing RXR heterodimeric partners. Retinoic acid is formed solely from retinaldehyde (Rald), which in turn is derived from vitamin A. Rald currently has no defined biologic role outside the eye. Here we show that Rald is present in rodent fat, binds retinol-binding proteins (CRBP1, RBP4), inhibits adipogenesis and suppresses peroxisome proliferator-activated receptor-γ and RXR responses. In vivo, mice lacking the Rald-catabolizing enzyme retinaldehyde dehydrogenase 1 (Raldh1) resisted diet-induced obesity and insulin resistance and showed increased energy dissipation. In ob/ob mice, administrating Rald or a Raldh inhibitor reduced fat and increased insulin sensitivity. These results identify Rald as a distinct transcriptional regulator of the metabolic responses to a high-fat diet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rald and Rald-metabolizing enzymes in rodent fat.
Figure 2: Rald and retinoic acid differentially regulate PPAR-γ–induced adipogenic genes.
Figure 3: Rald regulates nuclear receptor responses in vitro.
Figure 4: Raldh1 deficiency is associated with suppressed adipogenesis in vitro and increased Rald and reduced adipocyte size in vivo.
Figure 5: Raldh1−/− mice resist high-fat diet–induced obesity.
Figure 6: Raldh1 deficiency and direct Rald administration protect against insulin resistance.

Similar content being viewed by others

References

  1. Paydas, S. et al. Vasculitis associated with all trans retinoic acid (ATRA) in a case with acute promyelocytic leukemia. Leuk. Lymphoma 44, 547–548 (2003).

    Article  CAS  Google Scholar 

  2. Redlich, C.A. et al. Effect of long-term β-carotene and vitamin A on serum cholesterol and triglyceride levels among participants in the Carotene and Retinol Efficacy Trial (CARET). Atherosclerosis 143, 427–434 (1999).

    Article  CAS  Google Scholar 

  3. Rapola, J.M. et al. Randomised trial of α-tocopherol and β-carotene supplements on incidence of major coronary events in men with previous myocardial infarction. Lancet 349, 1715–1720 (1997).

    Article  CAS  Google Scholar 

  4. Napoli, J.L. Retinoic acid: its biosynthesis and metabolism. Prog. Nucleic Acid Res. Mol. Biol. 63, 139–188 (1999).

    Article  CAS  Google Scholar 

  5. Duester, G., Mic, F.A. & Molotkov, A. Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chem. Biol. Interact. 143–144, 201–210 (2003).

    Article  Google Scholar 

  6. Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 10, 940–954 (1996).

    Article  CAS  Google Scholar 

  7. Heyman, R.A. et al. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68, 397–406 (1992).

    Article  CAS  Google Scholar 

  8. Shulman, A.I. & Mangelsdorf, D.J. Retinoid x receptor heterodimers in the metabolic syndrome. N. Engl. J. Med. 353, 604–615 (2005).

    Article  CAS  Google Scholar 

  9. Fu, M. et al. A nuclear receptor atlas: 3T3–L1 adipogenesis. Mol. Endocrinol. 19, 2437–2450 (2005).

    Article  CAS  Google Scholar 

  10. Xue, J.C., Schwarz, E.J., Chawla, A. & Lazar, M.A. Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARγ. Mol. Cell. Biol. 16, 1567–1575 (1996).

    Article  CAS  Google Scholar 

  11. Kikonyogo, A., Abriola, D.P., Dryjanski, M. & Pietruszko, R. Mechanism of inhibition of aldehyde dehydrogenase by citral, a retinoid antagonist. Eur. J. Biochem. 262, 704–712 (1999).

    Article  CAS  Google Scholar 

  12. Ress, N.B. et al. Toxicology and carcinogenesis studies of microencapsulated citral in rats and mice. Toxicol. Sci. 71, 198–206 (2003).

    Article  CAS  Google Scholar 

  13. Duester, G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur. J. Biochem. 267, 4315–4324 (2000).

    Article  CAS  Google Scholar 

  14. Molotkov, A. & Duester, G. Genetic evidence that retinaldehyde dehydrogenase Raldh1 (Aldh1a1) functions downstream of alcohol dehydrogenase Adh1 in metabolism of retinol to retinoic acid. J. Biol. Chem. 278, 36085–36090 (2003).

    Article  CAS  Google Scholar 

  15. von Lintig, J. & Wyss, A. Molecular analysis of vitamin A formation: cloning and characterization of β-carotene 15,15′-dioxygenases. Arch. Biochem. Biophys. 385, 47–52 (2001).

    Article  CAS  Google Scholar 

  16. Lakshman, M.R., Mychkovsky, I. & Attlesey, M. Enzymatic conversion of all-trans-β-carotene to retinal by a cytosolic enzyme from rabbit and rat intestinal mucosa. Proc. Natl. Acad. Sci. USA 86, 9124–9128 (1989).

    Article  CAS  Google Scholar 

  17. Vogel, S. et al. Characterization of a new member of the fatty acid-binding protein family that binds all-trans-retinol. J. Biol. Chem. 276, 1353–1360 (2001).

    Article  CAS  Google Scholar 

  18. Berni, R., Clerici, M., Malpeli, G., Cleris, L. & Formelli, F. Retinoids: in vitro interaction with retinol-binding protein and influence on plasma retinol. FASEB J. 7, 1179–1184 (1993).

    Article  CAS  Google Scholar 

  19. Yu, S. et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. J. Biol. Chem. 278, 498–505 (2003).

    Article  CAS  Google Scholar 

  20. Iwaki, M. et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52, 1655–1663 (2003).

    Article  CAS  Google Scholar 

  21. Repa, J.J., Hanson, K.K. & Clagett-Dame, M. All-trans-retinol is a ligand for the retinoic acid receptors. Proc. Natl. Acad. Sci. USA 90, 7293–7297 (1993).

    Article  CAS  Google Scholar 

  22. Berger, J.P. et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator. Mol. Endocrinol. 17, 662–676 (2003).

    Article  CAS  Google Scholar 

  23. Canan Koch, S.S. et al. Synthesis of retinoid X receptor-specific ligands that are potent inducers of adipogenesis in 3T3–L1 cells. J. Med. Chem. 42, 742–750 (1999).

    Article  CAS  Google Scholar 

  24. Imai, T., Jiang, M., Chambon, P. & Metzger, D. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor α mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc. Natl. Acad. Sci. USA 98, 224–228 (2001).

    CAS  PubMed  Google Scholar 

  25. Green, H. & Meuth, M. An established pre-adipose cell line and its differentiation in culture. Cell 3, 127–133 (1974).

    Article  CAS  Google Scholar 

  26. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  Google Scholar 

  27. He, W. et al. Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. USA 100, 15712–15717 (2003).

    Article  CAS  Google Scholar 

  28. Kubota, N. et al. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin dependent and independent pathway. J. Biol. Chem. 281, 8748–8755 (2006).

    Article  CAS  Google Scholar 

  29. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005).

    Article  CAS  Google Scholar 

  30. Lee, S., Bacha, F., Gungor, N. & Arslanian, S.A. Racial differences in adiponectin in youth: relationship to visceral fat and insulin sensitivity. Diabetes Care 29, 51–56 (2006).

    Article  CAS  Google Scholar 

  31. Nawrocki, A.R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem. 281, 2654–2660 (2006).

    Article  CAS  Google Scholar 

  32. Maeda, K. et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab. 1, 107–119 (2005).

    Article  CAS  Google Scholar 

  33. Graham, T.E. et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 354, 2552–2563 (2006).

    Article  CAS  Google Scholar 

  34. Hallsten, K. et al. Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes. Diabetes 51, 3479–3485 (2002).

    Article  CAS  Google Scholar 

  35. Yamauchi, T. et al. Inhibition of RXR and PPARγ ameliorates diet-induced obesity and type 2 diabetes. J. Clin. Invest. 108, 1001–1013 (2001).

    Article  CAS  Google Scholar 

  36. Cavasotto, C.N. et al. Determinants of retinoid X receptor transcriptional antagonism. J. Med. Chem. 47, 4360–4372 (2004).

    Article  CAS  Google Scholar 

  37. Sell, H. et al. Peroxisome proliferator-activated receptor γ agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Endocrinology 145, 3925–3934 (2004).

    Article  CAS  Google Scholar 

  38. Fliers, E. et al. White adipose tissue: getting nervous. J. Neuroendocrinol. 15, 1005–1010 (2003).

    Article  CAS  Google Scholar 

  39. Ziouzenkova, O. et al. Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc. Natl. Acad. Sci. USA 100, 2730–2735 (2003).

    Article  CAS  Google Scholar 

  40. Xie, Y., Lashuel, H.A., Miroy, G.J., Dikler, S. & Kelly, J.W. Recombinant human retinol-binding protein refolding, native disulfide formation, and characterization. Protein Expr. Purif. 14, 31–37 (1998).

    Article  Google Scholar 

  41. Cogan, U., Kopelman, M., Mokady, S. & Shinitzky, M. Binding affinities of retinol and related compounds to retinol binding proteins. Eur. J. Biochem. 65, 71–78 (1976).

    Article  CAS  Google Scholar 

  42. Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. (Lond.) 109, 1–9 (1949).

    Article  Google Scholar 

  43. Szatmari, I. et al. PPARγ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J. Exp. Med. 203, 2351–2362 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Sukhova (Brigham and Women's Hospital), J. Kirkland and T. Tchkonia (Boston University), N. Krinsky and R. Russell (Tufts University) for helpful discussions; P. Scherer, S. Kliewer, D. Mangelsdorf (University of Texas), C.H. Lee (Harvard University) and T. Willson for reagents; and E. Shvarz, K. Volz, J. Qin, T. Archibald, N. Sharma, S. Laclair and R. Driscoll for technical support. This research was supported by the Boston Obesity Nutrition Research Center 5P30DK046200 and K12 HD051959-01 NICHD BIRCWH, the American Heart Association SDG 0530101N (O.Z.); the US National Institutes of Health (R01 HL071745 and P01 HL48743) and the Donald W. Reynolds Foundation (J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Plutzky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The metabolism of vitamin A generates Rald and retinoic acid. (PDF 56 kb)

Supplementary Fig. 2

Chromatograms of Rald oxime extracts from lean and obese mice as compared with vitamin A and Rald standards. (PDF 119 kb)

Supplementary Fig. 3

Rald inhibits PPAR-γ–regulated adipogenic genes. (PDF 62 kb)

Supplementary Fig. 4

Additional metabolic characteristics of Raldh1−/− and wild-type mice after high-fat diet feeding. (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziouzenkova, O., Orasanu, G., Sharlach, M. et al. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13, 695–702 (2007). https://doi.org/10.1038/nm1587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing