Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment

Abstract

The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1) is expressed on human CD34+ and mouse LinSca-1+c-Kit+ BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1, but not VEGFR2, blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Placental growth factor (PlGF), which signals through VEGFR1, restored early and late phases of hematopoiesis following BM suppression. PlGF enhanced early phases of BM recovery directly through rapid chemotaxis of VEGFR1+ BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9, mediating the release of soluble Kit ligand. Thus, PlGF promotes recruitment of VEGFR1+ HSCs from a quiescent to a proliferative BM microenvironment, favoring differentiation, mobilization and reconstitution of hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGFR1 is expressed on pluripotent murine HSCs with short-and long-term repopulating capacity.
Figure 2: Inhibition of VEGFR1, but not VEGFR2, after myelosuppression, results in delayed hematopoietic recovery and increased mortality of the treated mice.
Figure 3: Blocking VEGFR1 signaling after myeloablation inhibits cell-cycle progression, proliferation and differentiation of HSCs.
Figure 4: PlGF augments motogenic potential of VEGFR1+ BM-repopulating stem and progenitor cells.
Figure 5: PlGF-mediated upregulation of MMP-9 and release of sKitL is essential for recruitment and mobilization of BM-repopulating cells.
Figure 6: Administration of sKitL restores impaired hematopoiesis in mice treated with 5FU and neutralizing anti-VEGFR1.

Similar content being viewed by others

References

  1. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–851 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Heissig, B. et al. Recruitment of stem cells from bone marrow niche requires MMP-9 mediated release of Kit ligand. Cell 109, 625–637(2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berardi, A.C., Wang, A., Levine, J.D., Lopez, P. & Scadden, D.T. Functional isolation and characterization of human hematopoietic stem cells. Science 267, 104–108 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Phillips, R.L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Kabrun, N. et al. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124, 2039–2048 (1997).

    CAS  PubMed  Google Scholar 

  12. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Shalaby, F. et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ziegler, B.L. et al. KDR receptor: A key marker defining hematopoietic stem cells. Science 285, 1553–1558 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Haruta, H., Nagata, Y. & Todokoro, K. Role of Flk-1 in mouse hematopoietic stem cells. FEBS Lett. 507, 45–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Fong, G.H., Rossant, J., Gertsenstein, M. & Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Fong, G.H., Zhang, L., Bryce, D.M. & Peng, J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025 (1999).

    CAS  PubMed  Google Scholar 

  18. Hiratsuka, S. et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 61, 1207–1213 (2001).

    CAS  PubMed  Google Scholar 

  19. Sawano, A. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97, 785–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Clauss, M. et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271, 17629–17634 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    CAS  PubMed  Google Scholar 

  22. Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193, 1005–1014 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho, N.K. et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108, 865–876 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Van Zant, G. Studies of hematopoietic stem cells spared by 5-fluorouracil. J. Exp. Med. 159, 679–690 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Randall, T.D. & Weissman, I.L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89, 3596–3606 (1997).

    CAS  PubMed  Google Scholar 

  26. Goodell, M.A. et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Med. 3, 1337–1345 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Briddell, R.A., Hartley, C.A., Smith, K.A. & McNiece, I.K. Recombinant rat stem cell factor synergizes with recombinant human granulocyte colony-stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells that have enhanced repopulating potential. Blood 82, 1720–1723 (1993).

    CAS  PubMed  Google Scholar 

  28. Laterveer, L. et al. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 85, 2269–2275 (1995).

    CAS  PubMed  Google Scholar 

  29. Morrison, S.J. et al. Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939 (1997).

    CAS  PubMed  Google Scholar 

  30. Morrison, S.J., Wright, D.E. & Weissman, I.L. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Natl. Acad. Sci. USA 94, 1908–1913 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, X.L., Takakura, N. & Suda, T. In vitro effects of angiopoietins and VEGF on hematopoietic and endothelial cells. Biochem. Biophys. Res. Commun. 264, 133–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Broxmeyer, H.E. et al. Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. Int. J. Hematol. 62, 203–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Ratajczak, M.Z. et al. Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PlGF) in regulating human haemopoietic cell growth. Br. J. Haematol. 103, 969–979 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  Google Scholar 

  35. Dias, S. et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl. Acad. Sci. USA 98, 10857–10862 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerber, H.P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med. 5, 623–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 59, 5209–52018 (1999).

    CAS  PubMed  Google Scholar 

  39. Zhu, Z. et al. Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain-containing receptor single-chain antibodies from a phage display library. Cancer Res. 58, 3209–3214 (1998).

    CAS  PubMed  Google Scholar 

  40. Zhu, Z. et al. Inhibition of vascular endothelial growth factor induced mitogenesis of human endothelial cells by a chimeric anti-kinase insert domain- containing receptor antibody. Cancer Lett. 136, 203–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Witte, L. et al. Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev. 17, 155–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Hattori, K. et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Heart, Lung, and Blood Institute R01s, HL-58707, HL-61849, HL-66592, HL-67839 (to S.R.); the American Cancer Society (to S.R.); Leukemia and Lymphoma Foundation (to S.R.); the Doris Duke Charitable Foundation (to D.L.); National Institutes of Health, CA 72006, CA 75072, NS39278 and AR46238 (to Z.W.), and National Institutes of Health R01 HL61401 (to MASM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Rafii.

Ethics declarations

Competing interests

Monoclonal antibodies against VEGFR1 and VEGFR2 were generated by ImClone Systems Inc. D.H., Z.Z., P.B. and L.W. are employees of ImClone.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, K., Heissig, B., Wu, Y. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat Med 8, 841–849 (2002). https://doi.org/10.1038/nm740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing