Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation and function of cyclin T–Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy

This article has been updated

Abstract

Hypertrophic growth is a risk factor for mortality in heart diseases. Mechanisms are lacking for this global increase in RNA and protein per cell, which underlies hypertrophy. Hypertrophic signals cause phosphorylation of the RNA polymerase II C-terminal domain, required for transcript elongation. RNA polymerase II kinases include cyclin-dependent kinases-7 (Cdk7) and Cdk9, components of two basal transcription factors. We report activation of Cdk7 and -9 in hypertrophy triggered by signaling proteins (Gαq, calcineurin) or chronic mechanical stress. Only Cdk9 was activated by acute load or, in culture, by endothelin. A preferential role for Cdk9 was shown in RNA polymerase II phosphorylation and growth induced by endothelin, using pharmacological and dominant-negative inhibitors. All four hypertrophic signals dissociated 7SK small nuclear RNA, an endogenous inhibitor, from cyclin T–Cdk9. Cdk9 was limiting for cardiac growth, shown by suppressing its inhibitor (7SK) in culture and preventing downregulation of its activator (cyclin T1) in mouse myocardium.

Note: In the AOP version of this article, the numbering of the author affiliations was incorrect. This has now been fixed, and the affiliations appear correctly online and in print.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac pol II kinase activity declines with age, but is reactivated by hypertrophic signals.
Figure 2: ET-1 activates Cdk9 function.
Figure 3: Pharmacological and genetic inhibition implicates Cdk9 in ET-1-induced cardiac myocyte hypertrophy.
Figure 4: Cardiac cyclin T–Cdk9 complexes contain 7SK snRNA.
Figure 5: Hypertrophic signals dissociate 7SK snRNA from the cyclin T–Cdk9 complex, which is sufficient to trigger cardiac muscle cell growth.
Figure 6: Activation of Cdk9 by cyclin T1 suffices for cardiac myocyte hypertrophy in mice.

Similar content being viewed by others

Change history

  • 16 October 2002

    This was incorrect in AOP version but corrected in print. Renumbered the affiliations and added one line in the acknowledgments, as per the note.

References

  1. Sadoshima, J. & Izumo, S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. 59, 551–571 (1997).

    Article  CAS  Google Scholar 

  2. MacLellan, W.R. & Schneider, M.D. Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol. 62, 289–320 (2000).

    Article  CAS  Google Scholar 

  3. Verdecchia, P. et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J. Am. Coll. Cardiol. 38, 1829–1835 (2001).

    Article  CAS  Google Scholar 

  4. Mathew, J. et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 104, 1615–1621 (2001).

    Article  CAS  Google Scholar 

  5. Esposito, G. et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92 (2002).

    Article  CAS  Google Scholar 

  6. Sano, M. & Schneider, M.D. Still stressed out but doing fine: Normalization of wall stress is superfluous to maintaining cardiac function in chronic pressure overload. Circulation 105, 8–10 (2002).

    Article  Google Scholar 

  7. McKinsey, T.A. & Olson, E.N. Cardiac hypertrophy: sorting out the circuitry. Curr. Opin. Genet. Develop. 9, 267–274 (1999).

    Article  CAS  Google Scholar 

  8. Molkentin, J.D. & Dorn, G.W., 2nd. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).

    Article  CAS  Google Scholar 

  9. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  10. Adams, J.W. et al. Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc. Natl. Acad. Sci. USA 95, 10140–10145 (1998).

    Article  CAS  Google Scholar 

  11. Zhang, D. et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat. Med. 6, 556–563 (2000).

    Article  CAS  Google Scholar 

  12. Shioi, T. et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 19, 2537–2548 (2000).

    Article  CAS  Google Scholar 

  13. Bueno, O.F. et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000).

    Article  CAS  Google Scholar 

  14. Minamino, T. et al. MEKK1 is essential for cardiac hypertrophy and dysfunction induced by Gq. Proc. Natl. Acad. Sci. USA 99, 3866–3871 (2002).

    Article  CAS  Google Scholar 

  15. Antos, C.L. et al. Activated glycogen synthase-3 β suppresses cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 99, 907–912 (2002).

    Article  CAS  Google Scholar 

  16. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl. Acad. Sci. USA 98, 10308–10313 (2001).

    Article  CAS  Google Scholar 

  17. Shioi, T. et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol. Cell. Biol. 22, 2799–2809. (2002).

    Article  CAS  Google Scholar 

  18. Dahmus, M.E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009–19012 (1996).

    Article  CAS  Google Scholar 

  19. Akhtar, A., Faye, G. & Bentley, D.L. Distinct activated and non-activated RNA polymerase II complexes in yeast. EMBO J. 15, 4654–4664. (1996).

    Article  CAS  Google Scholar 

  20. Cho, H. et al. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev. 13, 1540–1552 (1999).

    Article  CAS  Google Scholar 

  21. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).

    Article  CAS  Google Scholar 

  22. Majello, B. & Napolitano, G. Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases. Front. Biosci. 6, D1358–1368 (2001).

    Article  CAS  Google Scholar 

  23. Abdellatif, M. et al. A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: Implications for cardiac hypertrophy. Mol. Cell. Biol. 18, 6729–6736 (1998).

    Article  CAS  Google Scholar 

  24. De Luca, A. et al. Cyclin T2a gene maps on human chromosome 2q21. J. Histochem. Cytochem. 49, 693–698 (2001).

    Article  CAS  Google Scholar 

  25. Kwak, Y.T., Ivanov, D., Guo, J., Nee, E. & Gaynor, R.B. Role of the human and murine cyclin T proteins in regulating HIV-1 tat-activation. J. Mol. Biol. 288, 57–69 (1999).

    Article  CAS  Google Scholar 

  26. Wimmer, J. et al. Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. Virology 255, 182–189 (1999).

    Article  CAS  Google Scholar 

  27. Peng, J., Zhu, Y., Milton, J.T. & Price, D.H. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 12, 755–762 (1998).

    Article  CAS  Google Scholar 

  28. Dorn, G.W. & Brown, J.H. Gq signaling in cardiac adaptation and maladaptation. Trends Cardiovasc. Med. 9, 26–34 (1999).

    Article  CAS  Google Scholar 

  29. Doi, T., Sugimoto, H., Arimoto, I., Hiroaki, Y. & Fujiyoshi, Y. Interactions of endothelin receptor subtypes A and B with Gi, Go, and Gq in reconstituted phospholipid vesicles. Biochemistry 38, 3090–3099 (1999).

    Article  CAS  Google Scholar 

  30. Taigen, T., De Windt, L.J., Lim, H.W. & Molkentin, J.D. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 97, 1196–1201 (2000).

    Article  CAS  Google Scholar 

  31. Asakura, M. et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nature Med. 8, 35–40. (2002).

    Article  CAS  Google Scholar 

  32. Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20, 5077–5086 (2000).

    Article  CAS  Google Scholar 

  33. Patturajan, M. et al. Growth-related changes in phosphorylation of yeast RNA polymerase II. J. Biol. Chem. 273, 4689–4694. (1998).

    Article  CAS  Google Scholar 

  34. Herrmann, C.H. & Mancini, M.A. The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions. J. Cell. Sci. 114, 1491–1503. (2001).

    CAS  PubMed  Google Scholar 

  35. Zhu, Y. et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 11, 2622–2632 (1997).

    Article  CAS  Google Scholar 

  36. Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).

    Article  CAS  Google Scholar 

  37. Nguyen, V.T., Kiss, T., Michels, A.A. & Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).

    Article  CAS  Google Scholar 

  38. Gaussin, V. et al. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc. Natl. Acad. Sci. USA 99, 2878–2883 (2002).

    Article  CAS  Google Scholar 

  39. Wada, T. et al. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol. Cell 5, 1067–1072 (2000).

    Article  CAS  Google Scholar 

  40. Chao, S.H. & Price, D.H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276, 31793–31799. (2001).

    Article  CAS  Google Scholar 

  41. Yang, X., Herrmann, C.H. & Rice, A.P. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J. Virol. 70, 4576–4584 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Subramaniam, A. et al. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J. Biol. Chem. 266, 24613–24620 (1991).

    CAS  PubMed  Google Scholar 

  43. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

  44. Matsuoka, M., Kato, J.Y., Fisher, R.P., Morgan, D.O. & Sherr, C.J. Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol. Cell. Biol. 14, 7265–7275 (1994).

    Article  CAS  Google Scholar 

  45. de Falco, G. et al. Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation. Oncogene 19, 373–379 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Boerwinkle, P. Kulkarni, G. Taffett, J. Pocius, L. Shirley & K. Youker for assistance; and R. J. Schwartz, H. Handa, A. Rice, C. Herrmann, W. Harper and L. Wei for helpful discussions. This work was supported in part by National Institutes of Health grants (to M.D.S.), the M.D. Anderson Foundation Professorship (to M.D.S.), the Japan Heart Foundation (to M.S.) and the Bayer Yakuhin Research Grant Abroad (to M.S.). L.B. and A.G. were supported by NIH Grant RO1 CA 60999-01A1 and by SHRO.

Note: In the AOP version of this article, the last sentence in the Acknowledgments section was inadvertantly omitted. This has now been fixed, and the acknowledgments appear correctly online and in print.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Schneider.

Ethics declarations

Competing interests

M.D.S. received research support from Aventis corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, M., Abdellatif, M., Oh, H. et al. Activation and function of cyclin T–Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med 8, 1310–1317 (2002). https://doi.org/10.1038/nm778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing