Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis

Abstract

Immunization of transgenic mouse models of Alzheimer disease using amyloid-β peptide (Aβ) reduces both the Alzheimer disease–like neuropathology and the spatial memory impairments of these mice. However, a therapeutic trial of immunization with Aβ42 in humans was discontinued because a few patients developed significant meningo-encephalitic cellular inflammatory reactions. Here we show that beneficial effects in mice arise from antibodies selectively directed against residues 4–10 of Aβ42, and that these antibodies inhibit both Aβ fibrillogenesis and cytotoxicity without eliciting an inflammatory response. These findings provide the basis for improved immunization antigens as well as attempts to design small-molecule mimics as alternative therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass spectrometric identification of the antisera epitope of Aβ42.
Figure 2: Anti-Aβ4–10 sera inhibit Aβ-induced cytoxicity.
Figure 3: Aβ42-immunized mouse sera inhibit Aβ42 fiber formation.
Figure 4: Disaggregation of preformed Aβ42 fibers by immunized sera.
Figure 5: Targeting Aβ4–10 necessary for activity of sera.

Similar content being viewed by others

References

  1. Small, D.H., Mok, S.S. & Bornstein, J.C. Alzheimer's disease and Aβ-toxicity: From top to bottom. Nature Rev. Neurosci. 2, 595–598 (2001).

    Article  CAS  Google Scholar 

  2. Chishti, M.A. et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21562–21570 (2001).

    Article  CAS  Google Scholar 

  3. Janus, C. et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408, 979–982 (2000).

    Article  CAS  Google Scholar 

  4. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  Google Scholar 

  5. Morgan, D. et al. Vaccination with Aβ peptide prevents memory deficits in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    Article  CAS  Google Scholar 

  6. Check, E. Nerve inflammation halts trial for Alzheimer's drug. Nature 415, 462 (2002).

    Article  CAS  Google Scholar 

  7. Marshall AG, Hendrickson, CL, Jackson, GS. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    Article  CAS  Google Scholar 

  8. Macht, M., Fiedler, W., Kürzinger, K. & Przybylski, M. Mass spectrometric mapping of protein epitope structures of the myocardial infarct markers myoglobin and troponin T. Biochemistry 35, 156333–15639 (1996).

    Article  Google Scholar 

  9. Suckau, D. et al. Molecular epitope identification by limited proteolysis of an immobilized antigen-antibody complex and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. USA 87, 9848–9852 (1990).

    Article  CAS  Google Scholar 

  10. Przybylski, M. et al. Approaches to the characterisation of tertiary and supramolecular protein structures by combination of protein chemistry and mass spectrometry. in New Methods for the Study of Biomolecular Complexes, 17–43 (Kluwer Acad. Publ., Amsterdam, 1998).

    Chapter  Google Scholar 

  11. Papace, C.I., Hoyes, J. & Tomer, K.B. Direct analysis of affinity-bound analytes by MALDI/TOF-MS. Anal. Chem. 199, 2609–2613 (1994).

    Article  Google Scholar 

  12. Kohlmann, M. et al. Epitope identification of the carboxy-terminal cytosolic domain of the Alzheimer's amyloid precursor protein (APP) with a monoclonal mouse anti-APP antibody by high resolution mass spectrometry. J. Pept. Sci. (in the press).

  13. Hochleitner, E.O., Borchers, C., Parker, C., Bienstock, R.J. & Tomer, K.B. Characterisation of a discontinuous epitope of the human immunodeficiency virus (HIV) core protein p24 by epitope excision and differential chemical modification followed by mass spectrometric peptide mapping analysis. Protein Sci. 9, 487–496 (2000).

    Article  CAS  Google Scholar 

  14. Yang, D.S. et al. Assembly of Alzheimer's amyloid-β fibrils and approaches for therapeutic intervention. Amyloid 8, 10–19 (2001).

    CAS  PubMed  Google Scholar 

  15. Walsh, D.M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952 (1999).

    Article  CAS  Google Scholar 

  16. Hartley, D.M. et al. Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19, 8876–8884 (1999).

    Article  CAS  Google Scholar 

  17. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med. 6, 916–919 (2000).

    Article  CAS  Google Scholar 

  18. DeMattos, R.B. et al. Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 98, 8850–8855 (2001).

    Article  CAS  Google Scholar 

  19. Fridman, W.H. & Sautes, C. Cell-mediated effects of immunoglobulins. in Molecular Biology Intelligence Unit (Springer, New York, 1997).

    Google Scholar 

  20. Solomon, B., Koppel, R., Hanan, E. & Katzav, T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer β-amyloid peptide. Proc. Natl. Acad. Sci. USA 93, 452–455 (1996).

    Article  CAS  Google Scholar 

  21. Solomon, B., Koppel, R., Frankel, D. & Hanan-Aharon, E. Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc. Natl. Acad. Sci. USA 94, 4109–4112 (1997).

    Article  CAS  Google Scholar 

  22. Frenkel, D., Solomon, B. & Benhar, I. Modulation of Alzheimer's β-amyloid neurotoxicity by site-directed single-chain antibody. J. Neuroimmunol. 106, 23–31 (2000).

    Article  CAS  Google Scholar 

  23. Kuo, Y.-M. et al. Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's Disease brains. J. Biol. Chem. 276, 12991–12998 (2001).

    Article  CAS  Google Scholar 

  24. Kalback, W. et al. APP Transgenic mice Tg2576 accumulate Aβ peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer's disease senile plaques. Biochemistry 41, 922–928 (2002).

    Article  CAS  Google Scholar 

  25. Gowing, E. et al. Chemical characterization of Aβ 17-42 peptide, a component of diffuse amyloid deposits of Alzheimer disease J. Biol. Chem. 269, 10987–10990 (1994).

    CAS  PubMed  Google Scholar 

  26. Delgado, M. & Ganea, D. VIP and PACAP enhance the in vivo generation of memory TH2 Cells by inhibiting peripheral deletion of antigen-specific effectors. Arch Physiol Biochem. 109, 372–376 (2001).

    Article  CAS  Google Scholar 

  27. McLean, C.A. et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease Ann. Neurol. 46, 860–866 (1999).

    Article  CAS  Google Scholar 

  28. Walsh, D.M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  Google Scholar 

  29. Youhnovski, N. et al. Thin chip microspray systems coupled to fourier transform-ICR mass spectrometry. Angew. Chem. Int. Ed. Engl. (in the press).

  30. Fligge, T.A., Reinhard, C., Harter, C., Wieland, F.T. & Przybylski, M. Oligomerisation peptides analogous to the cytoplasmic domains of coatamer receptors revealed by mass spectrometry. Biochemistry 39, 8491–8496 (2000).

    Article  CAS  Google Scholar 

  31. Bauer, S.H., Wiechers, M.F., Bruns, K., Przybylski, M. & Stuermer, C.A.O. Isolation and identification of the plasma membrane-associated intracellular protein reggie-2 from goldfish brain by chromatography and fourier transform-ion cyclotron resonance mass spectrometry. Anal. Biochem. 298, 25–31 (2001).

    Article  CAS  Google Scholar 

  32. Mayer-Fligge, P. et al. Synthesis and structural characterisation of human-identical lung surfactant protein SP-C. J. Pept. Sci. 4, 355–363 (1998).

    Article  CAS  Google Scholar 

  33. Altin, J.G. et al. A one-step procedure for biotinylation and chemical crosslinking of lymphocyte surface intracellular membrane-associated molecules. Anal. Biochem. 224, 382–389 (1995).

    Article  CAS  Google Scholar 

  34. Craig, D.B., Wong, J.C.Y. & Dovici, N.J. Detection of attomolar concentrations of alkaline phosphatase by capillary electrophoresis using laser-induced fluorescence detection. Anal. Chem. 68, 697–701 (1996).

    Article  CAS  Google Scholar 

  35. McLaurin, J., Golomb, R., Jurewicz, A., Antel, J.P. & Fraser, P.E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit aβ-induced toxicity. J. Biol. Chem. 275, 18495–18502 (2000).

    Article  CAS  Google Scholar 

  36. Jucker, M. et al. Age-related deposition of glia-associated fibrillar material in brains of C57BL/6 mice. Neuroscience 60, 875–889 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Wang for the synthesis of all peptides used in this study, N. Youhnovski and E. Damoc for expert assistance with the FT-ICR mass spectrometry, and the Electron Microscopy Suite at the University of Toronto for use of Hitachi 7000 electron microscope. This study was supported by the Ontario Alzheimer's Society (to P.H., P.E.F., D.W., H.M.&J.M.), Canadian Institutes of Health Research (to P.H., P.E.F., D.W., H.M.&J.M.), the Natural Sciences and Engineering Research Council of Canada (to J.M.), Howard Hughes Foundation (to P.H.), Canadian Genetic Diseases Network (to P.H.), the Scottish Rite Charitable Foundation (to P.E.F.&J.M.), the Deutsche Forschungsgemeinschaft (M.P.), Research & Arts Ministery Baden-Württemberg (M.P.) and the Alexander-von-Humboldt Foundation through a fellowship (X.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. McLaurin or M. Przybylski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaurin, J., Cecal, R., Kierstead, M. et al. Therapeutically effective antibodies against amyloid-β peptide target amyloid-β residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8, 1263–1269 (2002). https://doi.org/10.1038/nm790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing