Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system

Abstract

Multiple sclerosis (MS) is a devastating neuroinflammatory disorder of the central nervous system (CNS) in which T cells that are reactive with major components of myelin sheaths have a central role. The receptor for advanced glycation end products (RAGE) is present on T cells, mononuclear phagocytes and endothelium. Its pro-inflammatory ligands, S100-calgranulins, are upregulated in MS and in the related rodent model, experimental autoimmune encephalomyelitis (EAE). Blockade of RAGE suppressed EAE when disease was induced by myelin basic protein (MBP) peptide or encephalitogenic T cells, or when EAE occurred spontaneously in T-cell receptor (TCR)-transgenic mice devoid of endogenous TCR-α and TCR-β chains. Inhibition of RAGE markedly decreased infiltration of the CNS by immune and inflammatory cells. Transgenic mice with targeted overexpression of dominant-negative RAGE in CD4+ T cells were resistant to MBP-induced EAE. These data reinforce the importance of RAGE-ligand interactions in modulating properties of CD4+ T cells that infiltrate the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunolocalization of RAGE and S100 antigens in spinal cord tissue from MS patients.
Figure 2: Effect of RAGE blockade on EAE induced by 1–9NAc MBP.
Figure 3: Mechanisms of sRAGE-mediated suppression of EAE induced by 1–9NAc MBP.
Figure 4: Studies with 1AE10 cells.
Figure 5: Effect of sRAGE on spontaneous EAE in Tαβ mice.
Figure 6: Effect of RAGE on 1–9NAc MBP-induced EAE in transgenic mice with targeted overexpression of RAGE in CD4+ T cells and mononuclear phagocytes.

Similar content being viewed by others

References

  1. Bauer, J., Rauschka, H. & Lassmann, H. Inflammation in the nervous system: the human perspective. Glia 36, 235–243 (2001).

    Article  CAS  Google Scholar 

  2. Hohlfeld, R. & Wekerle, H. Immunological update on multiple sclerosis. Curr. Opin. Neurol. 14, 299–304 (2001).

    Article  CAS  Google Scholar 

  3. Zamvil, S. et al. T cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355–358 (1985).

    Article  CAS  Google Scholar 

  4. Owens, T., Wekerle, H. & Antel, J. Genetic models for CNS inflammation. Nat. Med. 7, 161–166 (2001).

    Article  CAS  Google Scholar 

  5. Schmidt, A.-M., Yan, S.-D., Yan, S.-F. & Stern, D.M. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108, 949–955 (2001).

    Article  CAS  Google Scholar 

  6. Hofmann, M. et al. RAGE mediates a novel proinflammatory axis: the cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901 (1999).

    Article  CAS  Google Scholar 

  7. Taguchi, A. et al. Blockade of RAGE/amphoterin suppresses tumor growth and metastases. Nature 405, 354–360 (2000).

    Article  CAS  Google Scholar 

  8. Hori, O. et al. RAGE is a cellular binding site for amphoterin: mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752–25761 (1995).

    Article  CAS  Google Scholar 

  9. Schafer, B. & Heizmann, C. The S100 family of EF-hand calcium-binding proteins: functions and pathology. TIBS 21, 134–140 (1996).

    CAS  PubMed  Google Scholar 

  10. Wong, F., Dittel, B. & Janeway, C. Transgenes and knockout mutations in animal models of type 1 diabetes and multiple sclerosis. Immunol. Rev. 169, 93–106 (1999).

    Article  CAS  Google Scholar 

  11. Baron, J., Madri, J., Ruddle, N., Hashim, G. & Janeway, C. Surface expression of α4-integrin by CD4 T cells is required for their entry into brain parenchyma. J. Exp. Med. 177, 57–68 (1993).

    Article  CAS  Google Scholar 

  12. Park, L. et al. Suppression of accelerated diabetic atherosclerosis by sRAGE. Nat. Med. 4, 1025–1031 (1998).

    Article  CAS  Google Scholar 

  13. Kaltschmidt, C. et al. Transcription factor NFκB is activated in microglia during EAE. J. Neuroimmunol. 55, 99–106 (1994).

    Article  CAS  Google Scholar 

  14. Pahan, K. & Schmid, M. Activation of NFκB in the spinal cord of EAE. Neurosci. Lett. 287, 17–20 (2000).

    Article  CAS  Google Scholar 

  15. Nygardas, P., Maatta, J. & Hinkkanen, A. Chemokine expression by CNS resident cells and infiltrating neutrophils during EAE in the Balb/c mouse. Eur. J. Immunol. 30, 1911–1918 (2000).

    Article  CAS  Google Scholar 

  16. Karpus, W. & Ransohoff, R. Chemokine regulation of EAE: temporal and spatial expression patterns govern disease pathogenesis. J. Immunol. 161, 2667–2671 (1998).

    CAS  PubMed  Google Scholar 

  17. Carlos, T. et al. VCAM-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 76, 965–970 (1990).

    CAS  PubMed  Google Scholar 

  18. Yednock, T. et al. Prevention of EAE by antibodies against α4β1-integrin. Nature 356, 63–66 (1992).

    Article  CAS  Google Scholar 

  19. Graesser, D., Mahooti, S. & Madri, J. Distinct roles for MMP-2 and α4-integrin in autoimmune T cell extravasation and residency in brain parenchyma during EAE. J. Neuroimmunol. 109, 121–131 (2000).

    Article  CAS  Google Scholar 

  20. Jiang, H., Braunstein, N., Yu, B., Winchester, R. & Chess, L. CD8 T cells control the Th phenotype of MBP-reactive CD4 T cells in EAE mice. Proc. Natl. Acad. Sci. USA 98, 6301–6306 (2001).

    Article  CAS  Google Scholar 

  21. Hafler, D. & Weiner, H. Immunologic mechanisms and therapy in MS. Immunol. Rev. 144, 75–107 (1995).

    Article  CAS  Google Scholar 

  22. Olivares-Villagomez, D., Wang, Y. & LaFaille, J. Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J. Exp. Med. 188, 1883–1894 (1998).

    Article  CAS  Google Scholar 

  23. Lafaille, J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous EAE in immunodeficient anti-MBP TCR transgenic mice. Cell 78, 399–408 (1994).

    Article  CAS  Google Scholar 

  24. Adlam, M., Duncan, D., Ng, D. & Siu, G. Positive selection induces CD4 promoter and enhancer function. Int. Immunol. 9, 877–887 (1997).

    Article  CAS  Google Scholar 

  25. Neuhaus, O., Farina, C., Wekerle, H. & Hohlfield, R. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 56, 702–708 (2001).

    Article  CAS  Google Scholar 

  26. Farina, C. et al. Treatment of multiple sclerosis with Copaxone: Elispot assay detects IL-4 and interferon-γ response in blood cells. Brain 124 (pt 4), 705–719 (2001).

    Article  CAS  Google Scholar 

  27. Howard, L. et al. Mechanisms of immunotherapeutic intervention by anti-CD40L antibody in an animal model of MS. J. Clin. Invest. 103, 281–290 (1999).

    Article  CAS  Google Scholar 

  28. Girvin, A. et al. A critical role for B7/CD28 costimulation in EAE: a comparative study using costimulatory molecule-deficient mice and monoclonal antibody blockade. J. Immunol. 164, 136–143 (2000).

    Article  CAS  Google Scholar 

  29. Zamvil, S. & Steinman, L. The T lymphocyte in EAE. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  Google Scholar 

  30. Raine, C. The Dale E. McFarlin Memorial Lecture: the immunology of the MS lesion. Ann. Neurol. 36, S61–S72 (1994).

    Article  CAS  Google Scholar 

  31. Brocke, S., Piercy, C., Steinman, L., Weissman, I. & Veroma, T. Antibodies to CD44 and integrin-α4, but not L-selectin, prevent CNS inflammation and EAE by blocking secondary leukocyte recruitment. Proc. Natl. Acad. Sci. USA 96, 6896–6901 (1999).

    Article  CAS  Google Scholar 

  32. Kobayashi, Y. et al. Antibodies against LFA-1 and ICAM-1 together suppress the progression of EAE. Cell. Immunol. 46, 295–303 (1995).

    Article  Google Scholar 

  33. Pitt, D., Werner, P. & Raine, C. Glutamate excitotoxicity in a model of MS. Nat. Med. 6, 67–70 (2000).

    Article  CAS  Google Scholar 

  34. Smith, T., Groom, T., Zhu, B. & Turski, L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat. Med. 6, 62–66 (2000).

    Article  CAS  Google Scholar 

  35. Sousa, M. et al. FAP: RAGE-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 21, 7576–7586 (2001).

    Article  CAS  Google Scholar 

  36. Jiang, H., Zhang, S-L. & Pernis, B. Role of CD8+ T cells in murine EAE. Science 256, 1213–1215 (1992).

    Article  CAS  Google Scholar 

  37. Lafaille, J. et al. MBP-specific Th2 cells cause EAE in immunodeficient hosts rather than protect them from disease. J. Exp. Med. 186, 307–312 (1997).

    Article  CAS  Google Scholar 

  38. Yan, S.-D. et al. Nonenzymatically glycated tau in AD induces neuronal oxidant stress resulting in cytokine gene expression and release of Aβ. Nat. Med. 1, 693–699 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US Public Health Service (NS42855, AI44927, AI46132) and the Multiple Sclerosis Society (RG2938). We thank A.P. Hays for providing human MS samples and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley ShiDu Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Wu, ZY., Zhang, H. et al. Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med 9, 287–293 (2003). https://doi.org/10.1038/nm831

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing