Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain

Abstract

The subcortical white matter of the adult human brain harbors a pool of glial progenitor cells. These cells can be isolated by fluorescence-activated cell sorting (FACS) after either transfection with green fluorescent protein (GFP) under the control of the CNP2 promoter, or A2B5-targeted immunotagging. Although these cells give rise largely to oligodendrocytes, in low-density culture we observed that some also generated neurons. We thus asked whether these nominally glial progenitors might include multipotential progenitor cells capable of neurogenesis. We found that adult human white-matter progenitor cells (WMPCs) could be passaged as neurospheres in vitro and that these cells generated functionally competent neurons and glia both in vitro and after xenograft to the fetal rat brain. WMPCs were able to produce neurons after their initial isolation and did not require in vitro expansion or reprogramming to do so. These experiments indicate that an abundant pool of mitotically competent neurogenic progenitor cells resides in the adult human white matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A2B5-based FACS selects oligodendrocyte progenitor cells.
Figure 2: Adult human WMPCs give rise to multipotential neurospheres.
Figure 3: Single lentiviral GFP-tagged WMPCs generated neurons and glia.
Figure 4: WMPC-derived neurons showed functional maturation in vitro.
Figure 5: WMPCs show density-dependent expansion and neurogenesis.
Figure 6: WMPCs engrafted into fetal rats give rise to neurons and glia in a site-specific manner.

Similar content being viewed by others

References

  1. Scolding, N. et al. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis [see comments]. Brain 121, 2221–2228 (1998).

    Article  Google Scholar 

  2. Roy, N.S. et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci. 19, 9986–9995 (1999).

    Article  CAS  Google Scholar 

  3. Gravel, M., DiPolo, A., Valera, P. & Braun, P. Four-kilobase sequence of the mouse CNP gene directs spatial and temporal expression of lacZ in transgenic mice. J. Neurosci. Res. 53, 393–404 (1998).

    Article  CAS  Google Scholar 

  4. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  Google Scholar 

  5. Palmer, T.D., Markakis, E.A., Willhoite, A.R., Safar, F. & Gage, F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    Article  CAS  Google Scholar 

  6. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  7. Vescovi, A.L., Reynolds, B.A., Fraser, D.D. & Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966 (1993).

    Article  CAS  Google Scholar 

  8. Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  Google Scholar 

  9. Vescovi, A. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human stem cells lines by epigenetic stimulation. Exp. Neurol. 156, 71–83 (1999).

    Article  CAS  Google Scholar 

  10. Svendsen, C., Caldwell, M. & Ostenfeld, T. Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9, 499–513 (1999).

    Article  CAS  Google Scholar 

  11. Carpenter, M. et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278 (1999).

    Article  CAS  Google Scholar 

  12. Han, J. et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum. Gene Ther. 10, 1867–1873 (1999).

    Article  CAS  Google Scholar 

  13. Zufferey, R., Donello, J., Trono, D. & Hope, H. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Windrem, M. et al. Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated regions of the rat brain. J. Neurosci. Res. 69, 966–975 (2002).

    Article  CAS  Google Scholar 

  15. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  16. Tse, F.W., Fraser, D.D., Duffy, S. & MacVicar, B.A. Voltage-activated K+ currents in acutely isolated hippocampal astrocytes. J. Neurosci. 12, 1781–1788 (1992).

    Article  CAS  Google Scholar 

  17. Barres, B.A. et al. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature 367, 371–375 (1994).

    Article  CAS  Google Scholar 

  18. Raff, M.C., Lillien, L.E., Richardson, W.D., Burne, J.F. & Noble, M.D. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333, 562–565 (1988).

    Article  CAS  Google Scholar 

  19. Vicario-Abejon, C., Johe, K.K., Hazel, T.G., Collazo, D. & McKay, R.D. Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15, 105–114 (1995).

    Article  CAS  Google Scholar 

  20. Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M. & McKay, R.D. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140 (1996).

    Article  CAS  Google Scholar 

  21. Keyoung, H.M. et al. Specific identification, selection and extraction of neural stem cells from the fetal human brain. Nat. Biotechnol. 19, 843–850 (2001).

    Article  CAS  Google Scholar 

  22. Yashima, K. et al. Expression of the RNA component of telomerase during human development and differentiation. Cell Growth Differ. 9, 805–813 (1998).

    CAS  PubMed  Google Scholar 

  23. Ostenfeld, T. et al. Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp. Neurol. 164, 215–226 (2000).

    Article  CAS  Google Scholar 

  24. Kim, N. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  Google Scholar 

  25. Gleeson, J., Lin, P., Flanagan, L. & Walsh, C. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23, 257–271 (1999).

    Article  CAS  Google Scholar 

  26. Doetsch, F., Caille, I., Lim, D., Garcia-Verdugo, J. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  27. Alvarez-Buylla, A. & Garcia-Verdugo, J.M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).

    Article  CAS  Google Scholar 

  28. Kukekov, V., Laywell, E., Thomas, L. & Steindler, D. A nestin-negative precursor cell from the adult mouse brain gives rise to neurons and glia. Glia 21, 399–407 (1997).

    Article  CAS  Google Scholar 

  29. Levine, J.M., Reynolds, R. & Fawcett, J.W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47 (2001).

    Article  CAS  Google Scholar 

  30. Mason, J. & Goldman, J. A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Molec. Cell. Neurosci. 20, 30–42 (2002).

    Article  CAS  Google Scholar 

  31. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  Google Scholar 

  32. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  Google Scholar 

  33. Roy, N.S. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 6, 271–277 (2000).

    Article  CAS  Google Scholar 

  34. Roy, N.S. et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J. Neurosci. Res. 59, 321–331 (2000).

    Article  CAS  Google Scholar 

  35. Wang, S. et al. Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the T α 1 tubulin promoter. Nat. Biotechnol. 16, 196–201 (1998).

    Article  CAS  Google Scholar 

  36. Brustle, O. et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat. Biotechnol. 16, 1040–1044 (1998).

    Article  CAS  Google Scholar 

  37. Benraiss, A., Chmielnicki, E., Roh, D. & Goldman, S.A. Adenoviral BDNF induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 21, 6718–6731 (2001).

    Article  CAS  Google Scholar 

  38. Kirschenbaum, B. et al. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 4, 576–589 (1994).

    Article  CAS  Google Scholar 

  39. Pincus, D.W. et al. FGF2/BDNF-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576–585 (1998).

    Article  CAS  Google Scholar 

  40. Marusich, M., Furneaux, H., Henion, P. & Weston, J. Hu neuronal proteins are expressed in proliferating neurogenic cells. J. Neurobiol. 25, 143–155 (1994).

    Article  CAS  Google Scholar 

  41. Barami, K., Iversen, K., Furneaux, H. & Goldman, S.A. Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. J. Neurobiol. 28, 82–101 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by US National Institute of Neurological Disorders and Stroke grants R01NS39559, R01NS33106 and R37/R01NS29813, and by the National Multiple Sclerosis Society, Christopher Reeve Paralysis Foundation, and Project ALS. N.S.R. and M.N. were supported in part by the American Heart Association. M.N. was supported by the Fundação para a Ciencia e Tecnologia and the Gulbenkian Foundation of Portugal. We thank D. Trono for the lentiviral plasmids; C. Walsh for anti-doublecortin antisera; H. Furneaux for Hu-specific monoclonal antibody 16A11; R. Bansal and S. Pfeiffer for the monoclonal O4 line; and A. Benraiss, M. Windrem and T. Takano for advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Goldman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, M., Roy, N., Keyoung, H. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9, 439–447 (2003). https://doi.org/10.1038/nm837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing