Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Advantage of rare HLA supertype in HIV disease progression

Abstract

The highly polymorphic human leukocyte antigen (HLA) class I molecules help to determine the specificity and repertoire of the immune response. The great diversity of these antigen-binding molecules confers differential advantages in responding to pathogens, but presents a major obstacle to distinguishing HLA allele–specific effects. HLA class I supertypes provide a functional classification for the many different HLA alleles that overlap in their peptide-binding specificities. We analyzed the association of these discrete HLA supertypes with HIV disease progression rates in a population of HIV-infected men. We found that HLA supertypes alone and in combination conferred a strong differential advantage in responding to HIV infection, independent of the contribution of single HLA alleles that associate with progression of the disease. The correlation of the frequency of the HLA supertypes with viral load suggests that HIV adapts to the most frequent alleles in the population, providing a selective advantage for those individuals who express rare alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HLA class I B-supertype genotypes and viral load.
Figure 2: Amino acid frequency and entropy in HIV subtype B.
Figure 3: Correlation between HLA supertype population frequencies and viral load, indicating rare-allele advantage.

Similar content being viewed by others

References

  1. Trowsdale, J. & Campbell, R.D. Complexity in the major histocompatibility complex. Eur. J. Immunogenet. 19, 45–55 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Bjorkman, P.J. & Parham, P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu. Rev. Biochem. 59, 253–288 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Buus, S., Sette, A., Colon, S., Miles, C. & Grey, H.M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenetic peptides. Science 235, 1353–1358 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Hill, A.V.S. et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Little, A.M. & Parham, P. Polymorphism and evolution of HLA class I and II genes and molecules. Rev. Immunogenet. 1, 105–123 (1999).

    CAS  PubMed  Google Scholar 

  6. Hughes, A.L., Ota, T. & Nei, M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol. Biol. Evol. 7, 515–524 (1990).

    CAS  PubMed  Google Scholar 

  7. Slatkin, M. & Muirhead, C.A. A method for estimating the intensity of overdominant selection from the distribution of allele frequencies. Genetics 156, 2119–2126 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bodmer, W.F. Evolutionary significance of the HLA system. Nature 237, 139–145 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Hill, A.V.S. The immunogenetics of human infectious diseases. Ann. Rev. Immunol. 16, 593–617 (1998).

    Article  CAS  Google Scholar 

  10. Propato, A. et al. Spreading of HIV-specific CD8+ T-cell repertoire in long-term nonprogressors and its role in the control of viral load and disease activity. Hum. Immunol. 62, 561–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. MacDonald, K.S. et al. Human leucocyte antigen supertypes and immune susceptibility to HIV-1, implications for vaccine design. Immunol. Lett. 79, 151–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Bertoni, R. et al. Human histocompatibility leukocyte antigen-binding supermotifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J. Clin. Invest. 100, 503–513 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomiyama, H., Yamada, N., Komatsu, H., Hirayama, K. & Takiguchi, M. A single CTL clone can recognize a naturally processed HIV-1 epitope presented by two different HLA class I molecules. Eur. J. Immunol. 30, 2521–2530 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Altfeld, M.A. et al. Identification of novel HLA-A2-restricted human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte epitopes predicted by the HLA-A2 supertype peptide-binding motif. J. Virol. 75, 1301–1311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clarke, B. The ecological genetics of host-parasite relationships. in Genetic aspects of host-parasite relationships. (eds. Taylor, A.E.R. & Muller, R.M.) 87–103 (Blackwell Oxford, 1976).

    Google Scholar 

  16. Howard, J.C. MHC organization of the rat: evolutionary considerations. in Evolution and Vertebrate Immunity (eds. Kelsoe, G. & Schulze, D.H.) 397–411 (University of Texas Press,, Austin, 1987).

    Google Scholar 

  17. Roger, M. Influence of host genes on HIV-1 disease progression. FASEB J. 12, 625–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Trachtenberg, E.A. & Erlich, H.A. A review of the role of the human leukocyte antigen (HLA) system as a host immunogenetic factor influencing HIV transmission and course of infection with progression to AIDS. in HIV Molecular Immunology Database (eds. Korber, B. et al.) 1–60 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM., 2001).

    Google Scholar 

  19. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Keet, I.P. et al. Consistent associations of HLA class I and II and transporter gene products with progression of human immunodeficiency virus type 1 infection in homosexual men. J. Infect. Dis. 180, 299–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Marsh, S.G.E., Parham, P. & Barber, L.D. The HLA FactsBook 398 (Academic Press, New York, 2002).

    Google Scholar 

  22. Sette, A. & Sidney, J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50, 201–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kaslow, R.A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Hendel, H. et al. New class I and II HLA alleles strongly associated with opposite patterns of progression to AIDS. J. Immunol. 162, 6942–6946 (1999).

    CAS  PubMed  Google Scholar 

  25. Begovich, A.B. et al. Polymorphism, recombination and linkage disequilibrium within the HLA class II region. J. Immunol. 148, 249–258 (1992).

    CAS  PubMed  Google Scholar 

  26. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Rissanen, J. Stochastic Complexity in Statistical Inquiry. 171 (World Scientific (Singapore), 1989).

    Google Scholar 

  28. Rissanen, J. Hypothesis selection and testing by the MDL principle. Comput. J. 42, 260–269 (1999).

    Article  Google Scholar 

  29. Li, M. & Vitanyi, P. An Introduction to Kolmogorov Complexity and its Applications. 546 (Springer-Verlag (New York), 1993).

    Book  Google Scholar 

  30. Nelson, G.W., Kaslow, R. & Mann, D.L. Frequency of HLA allele-specific peptide motifs in HIV-1 proteins correlates with the allele's association with relative rates of disease progression after HIV-1 infection. Proc. Natl. Acad. Sci. USA 94, 9802–9807 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anastos, K. et al. Association of race and gender with HIV-1 RNA levels and immunologic progression. J. Acquir. Immune Defic. Syndr. 24, 218–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Phair, J. et al. Acquired immune deficiency syndrome occurring within 5 years of infection with human immune deficiency virus type-1: the Multicenter AIDS Cohort Study. J. Acquir. Immune Defic. Syndr. 5, 490–496 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Saah, A.J. et al. Predictors of the risk of development of acquired immunodeficiency syndrome within 24 months among gay men seropositive for human immunodeficiency virus type 1: a report from the Multicenter AIDS Cohort Study. Am. J. Epidemiol. 135, 1147–1155 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Allen, T.M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. van der Burg, S.H. et al. HIV-1 reverse transcriptase-specific CTL against conserved epitopes do not protect against progression to AIDS. J. Immunol. 159, 3648–3654 (1997).

    CAS  PubMed  Google Scholar 

  36. Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hill, A., Takiguchi, M. & McMichael, A. Different rates of HLA class I molecule assembly which are determined by amino acid sequence in the alpha 2 domain. Immunogenetics 37, 95–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, A., Peh, C.A. & Elliott, T. The cell biology of MHC class I antigen presentation. Tissue Antigens 59, 3–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Boon, A.C. et al. The magnitude and specificity of influenza A virus-specific cytotoxic T-lymphocyte responses in humans is related to HLA-A and -B phenotype. J. Virol. 76, 582–590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yusim, K. et al. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J. Virol. 76, 8757–8768 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Groot, N.G. et al. Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proc. Natl. Acad. Sci. USA 99, 11748–11753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bugawan, T.L., Begovich, A.B. & Erlich, H.A. Rapid HLA-DPB typing using enzymatically amplified DNA and nonradioactive sequence specific oligonucleotide probes. Immunogenetics 34, 413 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Bugawan, T.L. & Erlich, H.A. Rapid typing of HLA-DQB1 DNA polymorphism using nonradioactive oligonucleotide probes and amplified DNA. Immunogenetics 33, 163–170 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Bugawan, T.L., Apple, R. & Erlich, H.A. A method for typing polymorphism at the HLA-A locus using PCR amplification and immobilized oligonucleotide probes. Tissue Antigens 44, 137–147 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Scharf, S.J., Griffith, R.L. & Erlich, H.A. Rapid typing of DNA sequence polymorphism at the HLA-DRB1 locus using the polymerase chain reaction and nonradioactive oligonucleotide probes. Hum. Immunol. 30, 190–201 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Erlich, H.A. & Trachtenberg E.A. PCR-based methods of HLA typing. in Molecular Epidemiology: A Practical Approach (eds. Carrington, M. & Hoelzel, A.R.) 181–207 (Oxford University Press, Oxford, 2001).

    Google Scholar 

  47. Cao, K. et al. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum. Immunol. 62, 1009–1030 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Venables, W.N. & Ripley, B.D. Modern Applied Statistics with S-PLUS. 501 (Springer (New York), 1999).

    Book  Google Scholar 

  49. Hope, A.C.A. A simplified Monte-Carlo significance test procedure. J. R. Stat. Soc. Ser. B, 582–598 (1968).

Download references

Acknowledgements

We thank M. Vinson, C. Okoye, J. Joffee-Block and P. Otto for technical assistance, and L. Jacobson for discussions of the data. The project was funded by the National Cancer Institute (R01-HD37356 to S.W.), the National Institute of Allergy and Infectious Diseases (P30-CA79458 to S.W.) and the National Institutes of Health (U01-AI-35039 to J.P. and S.W.). Additional support was provided by the Elizabeth Glazer Pediatric AIDS Foundation (R.F. and B.K.), a Los Alamos National Laboratory Program Developmental Award (B.K., M.F. and J.T.), the My Brother Joey Foundation (E.T.) and an anonymous foundation (S.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Wolinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trachtenberg, E., Korber, B., Sollars, C. et al. Advantage of rare HLA supertype in HIV disease progression. Nat Med 9, 928–935 (2003). https://doi.org/10.1038/nm893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing