Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hepatocyte growth factor and its receptor are required for malaria infection

Abstract

Plasmodium, the causative agent of malaria, must first infect hepatocytes to initiate a mammalian infection. Sporozoites migrate through several hepatocytes, by breaching their plasma membranes, before infection is finally established in one of them. Here we show that wounding of hepatocytes by sporozoite migration induces the secretion of hepatocyte growth factor (HGF), which renders hepatocytes susceptible to infection. Infection depends on activation of the HGF receptor, MET, by secreted HGF. The malaria parasite exploits MET not as a primary binding site, but as a mediator of signals that make the host cell susceptible to infection. HGF/MET signaling induces rearrangements of the host-cell actin cytoskeleton that are required for the early development of the parasites within hepatocytes. Our findings identify HGF and MET as potential targets for new approaches to malaria prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sporozoite migration through cells and mechanical cell wounding induce the release of ISIF.
Figure 2: HGF secreted by sporozoite-traversed host cells is required for infection.
Figure 3: HGF activity correlates with infection level.
Figure 4: Effect of HGF on Plasmodium infection is mediated through its receptor, MET.
Figure 5: HGF/MET signaling is required for early development of parasites inside host cells, and involves host-cell actin cytoskeleton reorganization.
Figure 6: MET activation is required during natural in vivo malarial infection.

Similar content being viewed by others

References

  1. Mota, M.M. et al. Migration of Plasmodium sporozoites through cells before infection. Science 291, 141–144 (2001).

    Article  CAS  Google Scholar 

  2. McNeil, P.L. et al. Growth factors are released by mechanically wounded endothelial cells. J. Cell Biol. 109, 811–822 (1989).

    Article  CAS  Google Scholar 

  3. Muthukrishnan, L. et al. Basic fibroblast growth factor is efficiently released from a cytosolic storage site through plasma membrane disruptions of endothelial cells. J. Cell. Physiol. 148, 1–16 (1991).

    Article  CAS  Google Scholar 

  4. McNeil, P.L. & Steinhardt, R.A. Loss, restoration, and maintenance of plasma membrane integrity. J. Cell Biol. 137, 1–4 (1997).

    Article  CAS  Google Scholar 

  5. Mota, M.M. & Rodriguez, A. Plasmodium yoelii: efficient in vitro invasion and complete development of sporozoites in mouse hepatic cell lines. Exp. Parasitol. 96, 257–259 (2000).

    Article  CAS  Google Scholar 

  6. Kinoshita, T., Hirao, S., Matsumoto, K. & Nakamura, T. Possible endocrine control by hepatocyte growth factor of liver regeneration after partial hepatectomy. Biochem. Biophys. Res. Commun. 177, 330–335 (1991).

    Article  CAS  Google Scholar 

  7. Zarnegar, R., DeFrances, M.C., Kost, D.P., Lindroos, P. & Michalopoulos, G.K. Expression of hepatocyte growth factor mRNA in regenerating rat liver after partial hepatectomy. Biochem. Biophys. Res. Commun. 177, 559–565 (1999).

    Article  Google Scholar 

  8. Rong, S. et al. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol. Cell. Biol. 12, 5152–5158 (1992).

    Article  CAS  Google Scholar 

  9. Bhargava, M. et al. Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ. 3, 11–20 (1992).

    CAS  PubMed  Google Scholar 

  10. Misumi, Y., Miki, K., Takatsuki, A., Tamura, G. & Ikehara, Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261, 11398–11403 (1986).

    CAS  PubMed  Google Scholar 

  11. McNeil, P.L., Clarke, M.F.S. & Miyake, K. Cell motility, cell wound assays. in Current Protocols in Cell Biology, Supplement 2 (eds. Bonifacino, J.S., Dasso, M., Lippincott-Schwartz, J., Harford, J.B. & Yamada, K.M.) 12.4.1–12.4.15 (John Wiley & Sons, New York, 1999).

    Google Scholar 

  12. Trusolino, L. & Comoglio, P.M. Scatter-factor and semaphorin receptors: cell signaling for invasive growth. Nat. Rev. Cancer 2, 289–300 (2002).

    Article  CAS  Google Scholar 

  13. Calvo-Calle, J.M., Moreno, A., Eling, W.M. & Nardin, E.H. In vitro development of infectious liver stages of P. yoelii and P. berghei malaria in human cell lines. Exp. Parasitol. 79, 362–373 (1994).

    Article  CAS  Google Scholar 

  14. Naldini, L. et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 6, 501–504 (1991).

    CAS  PubMed  Google Scholar 

  15. Park, M. et al. Mechanism of met oncogene activation. Cell 45, 895–904 (1986).

    Article  CAS  Google Scholar 

  16. Ponzetto, C. et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261–271 (1994).

    Article  CAS  Google Scholar 

  17. Prat, M., Crepaldi, T., Pennacchietti, S., Bussolino, F. & Comoglio, P.M. Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J. Cell Sci. 111, 237–247 (1998).

    CAS  PubMed  Google Scholar 

  18. Shen, Y., Naujokas, M., Park, M. & Ireton, K. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103, 501–510 (2000).

    Article  CAS  Google Scholar 

  19. Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with MET. Nat. Cell Biol. 4, 720–724 (2002).

    Article  CAS  Google Scholar 

  20. Royal, I., Lamarche-Vane, N., Lamorte, L., Kaibuchi, K. & Park, M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor dofferentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell 11, 1709–1725 (2000).

    Article  CAS  Google Scholar 

  21. Morotti, A., Mila, S., Accornero, P., Tagliabue, E. & Ponzetto, C. K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21, 4885–4893 (2002).

    Article  CAS  Google Scholar 

  22. Mota, M.M., Hafalla, J.C.R. & Rodriguez, A. Migration through host cells activates Plasmodium sporozoites for infection. Nat. Med. 8, 1318–1322 (2002).

    Article  CAS  Google Scholar 

  23. Jeffers, M., Rong, S., Anver, M. & Vande Woude, G.F. Autocrine hepatocyte growth factor/scatter factor-Met signaling induces transformation and the invasive/metastastic phenotype in C127 cells. Oncogene 13, 853–856 (1996).

    CAS  PubMed  Google Scholar 

  24. Rong, S., Segal, S., Anver, M., Resau, J.H. & Vande Woude, G.F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl Acad. Sci. USA 91, 4731–4735 (1994).

    Article  CAS  Google Scholar 

  25. Matsumoto, K. & Nakamura, T. Hepatocyte growth factor: molecular structure and implications for a central role in liver regeneration. J. Gastroenterol. Hepatol. 6, 509–519 (1991).

    Article  CAS  Google Scholar 

  26. Ljubimova, J.Y., Petrovic, L.M., Wilson, S.E., Geller, S.A. & Demetriou, A.A. Expression of HGF, its receptor c-met, c-myc, and albumin in cirrhotic and neoplastic human liver tissue. J. Histochem. Cytochem. 45, 79–87 (1997).

    Article  CAS  Google Scholar 

  27. Pinzon-Ortiz, C., Friedman, J., Esko, J. & Sinnis, P. The binding of the circumsporozoite protein to cell surface heparan sulfate proteoglycans is required for Plasmodium sporozoite attachment to target cells. J. Biol. Chem. 276, 26784–26791 (2001).

    Article  CAS  Google Scholar 

  28. Pradel, G., Garapaty, S. & Frevert, U. Proteoglycans mediate malaria sporozoite targeting to the liver. Mol. Microbiol. 45, 637–651 (2002).

    Article  CAS  Google Scholar 

  29. Silvie, O. et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat. Med. 9, 93–96 (2003).

    Article  CAS  Google Scholar 

  30. Naoumov, N.V. & Eddleston, A.L. Host immune response and variations in the virus genome: pathogenesis of liver damage caused by hepatitis B virus. Gut 35, 1013–1017 (1994).

    Article  CAS  Google Scholar 

  31. Thursz, M.R. et al. Association of hepatitis B surface antigen carriage with severe malaria in Gambian children. Nat. Med. 1, 374–375 (1995).

    Article  CAS  Google Scholar 

  32. Serghides, L. & Kain, K.C. Mechanism of protection induced by vitamin A in falciparum malaria. Lancet 359, 1404–1406 (2002).

    Article  Google Scholar 

  33. Gohda, E. Function and regulation of production of hepatocyte growth factor (HGF). Nippon Yakurigaku Zasshi 119, 287–294 (2002).

    Article  CAS  Google Scholar 

  34. Mazier, D. et al. Complete development of hepatic stages of Plasmodium falciparum in vitro. Science 227, 440–442 (1985).

    Article  CAS  Google Scholar 

  35. Tsuji, M., Mattei, D., Nussenzweig, R.S., Eichinger, D. & Zavala, F. Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites. Parasitol. Res. 80, 16–21 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Haas, A. Jacinto, L. Parreira and M.C. Soares for critically reviewing the manuscript; T. Maciag for the FGF dominant negative construct; V.E. do Rosário, C. Casimiro and C. Alves for providing P. berghei-infected mosquitoes; and L. Naldini, A. Follenzi and M. Mazzone for kindly providing lentiviral vectors and experimental support. Funding was provided by Fundação para a Ciência e Tecnologia (Projects POCTI/38563/MGI/2001 and POCTI/MGI/44517/2002) and the National Institutes of Health (grants AI 49432 and AI 53698). M.C., L.C.-S., A.M.V., S.S., P.L., D.C. and M.M.M. are supported by Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M Mota.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrolo, M., Giordano, S., Cabrita-Santos, L. et al. Hepatocyte growth factor and its receptor are required for malaria infection. Nat Med 9, 1363–1369 (2003). https://doi.org/10.1038/nm947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing