Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic cell–induced autoimmune heart failure requires cooperation between adaptive and innate immunity

A Corrigendum to this article was published on 01 January 2004

Abstract

Genetic susceptibility and autoimmunity triggered by microbial infections are factors implicated in the pathogenesis of dilated cardiomyopathy, the most common cause of heart failure in young patients. Here we show that dendritic cells (DCs) loaded with a heart-specific self peptide induce CD4+ T-cell-mediated myocarditis in nontransgenic mice. Toll-like receptor (TLR) stimulation, in concert with CD40 triggering of self peptide–loaded dendritic cells, was shown to be required for disease induction. After resolution of acute myocarditis, DC-immunized mice developed heart failure, and TLR stimulation of these mice resulted in relapse of inflammatory infiltrates. Injection of damaged, syngeneic cardiomyocytes also induced myocarditis in mice if TLRs were activated in vivo. DC–induced myocarditis provides a unifying theory as to how tissue damage and activation of TLRs during infection can induce autoimmunity, relapses and cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self antigen–loaded, activated DCs induce myocarditis.
Figure 2: Cardiomyopathy after immunization with MYHC-α(614–629)-loaded DCs.
Figure 3: CD40 is essential in DC-mediated myocarditis.
Figure 4: TLR stimulation renders DCs autoaggressive.
Figure 5: Combined tissue injury and TLR activation induce myocarditis.

Similar content being viewed by others

References

  1. Roig, E. et al. Serum interleukin-6 in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am. J. Cardiol. 82, 688–690 (1998).

    Article  CAS  Google Scholar 

  2. Mann, D.L. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ. Res. 91, 988–998 (2002).

    Article  CAS  Google Scholar 

  3. Caforio, A.L., Mahon, N.J., Tona, F. & McKenna, W.J. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur. J. Heart Fail. 4, 411–417 (2002).

    Article  Google Scholar 

  4. Rose, N.R., Herskowitz, A., Neumann, D.A. & Neu, N. Autoimmune myocarditis: a paradigm of post-infection autoimmune disease. Immunol. Today. 9, 117–120 (1988).

    Article  CAS  Google Scholar 

  5. Feldman, A.M. & McNamara, D. Myocarditis. N. Engl. J. Med. 343, 1388–1398 (2000).

    Article  CAS  Google Scholar 

  6. Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).

    CAS  PubMed  Google Scholar 

  7. Bachmaier, K. et al. Chlamydia infections and heart disease linked through antigenic mimicry. Science 283, 1335–1339 (1999).

    Article  CAS  Google Scholar 

  8. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  9. Mellman, I. & Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  Google Scholar 

  10. Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science 293, 253–256 (2001).

    Article  CAS  Google Scholar 

  11. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    Article  CAS  Google Scholar 

  12. Menges, M. et al. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195, 15–21 (2002).

    Article  CAS  Google Scholar 

  13. Ludewig, B., Odermatt, B., Landmann, S., Hengartner, H. & Zinkernagel, R.M. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med. 188, 1493–1501 (1998).

    Article  CAS  Google Scholar 

  14. Dittel, B.N., Visintin, I., Merchant, R.M. & Janeway, C.A. Jr. Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J. Immunol. 163, 32–39 (1999).

    CAS  PubMed  Google Scholar 

  15. Donermeyer, D.L., Beisel, K.W. & Allen, P.M. Myocarditis-inducing epitope of myosin binds constitutively and stably to I-Ak on antigen-presenting cells in the heart. J. Exp. Med. 182, 1291–300 (1995).

    Article  CAS  Google Scholar 

  16. Means, T.K. et al. Human Toll-Like Receptors Mediate Cellular Activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927 (1999).

    CAS  PubMed  Google Scholar 

  17. Pummerer, C.L. et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J. Clin. Invest. 97, 2057–2062 (1996).

    Article  CAS  Google Scholar 

  18. Rose, N.R. & Bona, C. Defining criteria for autoimmune diseases (Witebskys postulates revisited). Immunol. Today. 14, 426–430 (1993).

    Article  CAS  Google Scholar 

  19. Grewal, I.S., Xu, J. & Flavell, R.A. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 378, 617–620 (1995).

    Article  CAS  Google Scholar 

  20. Cella, M., et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  Google Scholar 

  21. Josien, R. et al. TRANCE, a Tumor Necrosis Factor Family Member, Enhances the Longevity and Adjuvant Properties of Dendritic Cells In Vivo. J. Exp. Med. 191, 495–502 (2000).

    Article  CAS  Google Scholar 

  22. Howard, L.M. & Miller, S.D. Autoimmune intervention by CD154 blockade prevents T cell retention and effector function in the target organ. J. Immunol. 166, 1547–1553 (2001).

    Article  CAS  Google Scholar 

  23. Medzhitov, R. & Janeway, C.A. Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  Google Scholar 

  24. Campos, M.A. et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416–423 (2001).

    Article  CAS  Google Scholar 

  25. Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453–462 (2000).

    Article  CAS  Google Scholar 

  26. Eriksson, U. et al. Activation of dendritic cells through the IL-1 receptor 1 is essential for the induction of autoimmune myocarditis. J. Exp. Med. 197, 333–341 (2003).

    Article  Google Scholar 

  27. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: How good is the case for T-cell epitope mimickry? Nat. Immunol. 2, 797–801 (2001).

    Article  CAS  Google Scholar 

  28. Calabrese, F. et al. Molecular diagnosis of myocarditis and dilated cardiomyopathy in children: clinicopathologic features and prognostic implications. Diagn. Mol. Pathol. 11, 212–221 (2002).

    Article  Google Scholar 

  29. Steinman, R.M. & Nussenzweig, M.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. U. S. A. 99, 351–358 (2001).

    Article  Google Scholar 

  30. Turley, S.J. Dendritic cells: inciting and inhibiting autoimmunity. Curr. Opin. Immunol. 14, 765–770 (2002).

    Article  CAS  Google Scholar 

  31. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

  32. Magram, J. et al. IL-12-deficient mice are defective in IFNγ production and type 1 cytokine responses. Immunity 4, 471–4781 (1996).

    Article  CAS  Google Scholar 

  33. Labow, M. et al. Absence of IL-1 signaling and reduced inflammatory response in IL-1 type I receptor-deficient mice. J. Immunol. 159, 2452–2461 (1997).

    CAS  PubMed  Google Scholar 

  34. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  Google Scholar 

  35. Eriksson, U., Kurrer, M.O., Sebald, W., Brombacher, F. & Kopf, M. Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma. J. Immunol. 167, 5464–5469 (2001).

    Article  CAS  Google Scholar 

  36. Kong, Y.Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  Google Scholar 

  37. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods. 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  38. Eriksson, U. et al. Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3. Circulation 107, 320–325 (2003).

    Article  CAS  Google Scholar 

  39. Crackower, M.A. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417, 822–828 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Institute of Molecular Biotechnology and the Swiss National Foundation. U.E. was supported by the Swiss Foundation for Medical-Biological Grants, the Novartis Foundation, AstraZeneca and the Department of Internal Medicine, Basel University Hospital. J.M.P. holds a Canada Chair in Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Urs Eriksson or Josef M Penninger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, U., Ricci, R., Hunziker, L. et al. Dendritic cell–induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9, 1484–1490 (2003). https://doi.org/10.1038/nm960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing