Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators

Abstract

Patients presenting with metastatic rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children, have a very poor clinical prognosis. This is due, in large part, to our rudimentary knowledge of the molecular events that dictate metastatic potential. We used cDNA microarray analysis of RMS cell lines, derived from Ink4a/Arf-deficient mice transgenic for hepatocyte growth factor/scatter factor (HGF/SF), to identify a set of genes whose expression was significantly different between highly and poorly metastatic cells. Subsequent in vivo functional studies revealed that the actin filament–plasma membrane linker ezrin (encoded by Vil2) and the homeodomain-containing transcription factor Six-1 (sine oculis–related homeobox-1 homolog) had essential roles in determining the metastatic fate of RMS cells. VIL2 and SIX1 expression was enhanced in human RMS tissue, significantly correlating with clinical stage. The identification of ezrin and Six-1 as critical regulators of metastasis in RMS provides new mechanistic and therapeutic insights into this pediatric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cDNA microarray analysis of highly and poorly metastatic RMS cell lines.
Figure 2: Validation of genes identified by cDNA microarray analysis as significantly overexpressed in highly and poorly metastatic cells.
Figure 3: Analysis of expression of VIL2 and SIX1 in staged human RMS tissue.
Figure 4: Phenotypic consequences of altered Ezrin function.
Figure 5: Phenotypic consequences of altered Six-1 expression.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Merlino, G. & Helman, L.J. Rhabdomyosarcoma—working out the pathways. Oncogene 18, 5340–5348 (1999).

    Article  CAS  Google Scholar 

  2. Dagher, R. & Helman, L. Rhabdomyosarcoma: an overview. Oncologist 4, 34–44 (1999).

    CAS  PubMed  Google Scholar 

  3. Ruymann, F.B. & Grovas, A.C. Progress in the diagnosis and treatment of rhabdomyosarcoma and related soft tissue sarcomas. Cancer Invest. 18, 223–241 (2000).

    Article  CAS  Google Scholar 

  4. Khanna, C. et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 61, 3750–3759 (2001).

    CAS  PubMed  Google Scholar 

  5. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).

    Article  CAS  Google Scholar 

  6. Ye, Q.H. et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat. Med. 9, 416–423 (2003).

    Article  CAS  Google Scholar 

  7. Sharp, R. et al. Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis. Nat. Med. 8, 1276–1280 (2002).

    Article  CAS  Google Scholar 

  8. Khan, J. et al. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc. Natl. Acad. Sci. USA 96, 13264–13269 (1999).

    Article  CAS  Google Scholar 

  9. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    Article  CAS  Google Scholar 

  10. Tran Quang, C., Gautreau, A., Arpin, M. & Treisman, R. Ezrin function is required for ROCK-mediated fibroblast transformation by the net and dbl oncogenes. EMBO J. 19, 4565–4576 (2000).

    Article  CAS  Google Scholar 

  11. Ng, T. et al. Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J. 20, 2723–2741 (2001).

    Article  CAS  Google Scholar 

  12. Khanna, C. et al. Ezrin, a membrane-cytoskeleton linker, is necessary for osteosarcoma metastasis. Nat. Med. (in the press).

  13. Maniotis, A.J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).

    Article  CAS  Google Scholar 

  14. Zhang, Y.W. & Vande Woude, G.F. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J. Cell. Biochem. 88, 408–417 (2003).

    Article  CAS  Google Scholar 

  15. Louvet-Vallee, S. ERM proteins: from cellular architecture to cell signaling. Biol. Cell 92, 305–316 (2000).

    Article  CAS  Google Scholar 

  16. Bretscher, A., Edwards, K. & Fehon, R.G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586–599 (2002).

    Article  CAS  Google Scholar 

  17. Ford, H.L., Kabingu, E.N., Bump, E.A., Mutter, G.L. & Pardee, A.B. Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: a possible mechanism of breast carcinogenesis. Proc. Natl. Acad. Sci. USA 95, 12608–12613 (1998).

    Article  CAS  Google Scholar 

  18. Ford, H.L. et al. Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J. Biol. Chem. 275, 22245–22254 (2000).

    Article  CAS  Google Scholar 

  19. Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).

    Article  CAS  Google Scholar 

  20. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    Article  CAS  Google Scholar 

  21. Krieg, J. & Hunter, T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J. Biol. Chem. 267, 19258–19265 (1992).

    CAS  PubMed  Google Scholar 

  22. Crepaldi, T., Gautreau, A., Comoglio, P.M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).

    Article  CAS  Google Scholar 

  23. Nestl, A. et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res. 61, 1569–1577 (2001).

    CAS  PubMed  Google Scholar 

  24. Gautreau, A., Louvard, D. & Arpin, M. ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr. Opin. Cell Biol. 14, 104–109 (2002).

    Article  CAS  Google Scholar 

  25. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  26. Sahai, E. & Marshall, C.J. RHO-GTPases and cancer. Nat. Rev. Cancer 2, 133–142 (2002).

    Article  Google Scholar 

  27. Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272, 23371–23375 (1997).

    Article  CAS  Google Scholar 

  28. Lamb, R.F. et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat. Cell Biol. 2, 281–287 (2000).

    Article  CAS  Google Scholar 

  29. Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  Google Scholar 

  30. Danen, E.H., Sonneveld, P., Sonnenberg, A. & Yamada, K.M. Dual stimulation of Ras/mitogen-activated protein kinase and RhoA by cell adhesion to fibronectin supports growth factor-stimulated cell cycle progression. J. Cell Biol. 151, 1413–1422 (2000).

    Article  CAS  Google Scholar 

  31. Relaix, F. & Buckingham, M. From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev. 13, 3171–1318 (1999).

    Article  CAS  Google Scholar 

  32. Heanue, T.A. et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev. 13, 3231–3243 (1999).

    Article  CAS  Google Scholar 

  33. Kardon, G., Heanue, T.A. & Tabin, C.J. Pax3 and Dach2 positive regulation in the developing somite. Dev. Dyn. 224, 350–355 (2002).

    Article  CAS  Google Scholar 

  34. Laclef, C. et al. Altered myogenesis in Six1-deficient mice. Development 130, 2239–2252 (2003).

    Article  CAS  Google Scholar 

  35. Spitz, F. et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc. Natl. Acad. Sci. USA 95, 14220–14225 (1998).

    Article  CAS  Google Scholar 

  36. Schafer, K. & Braun, T. Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Nat Genet. 23, 213–216 (1999).

    Article  CAS  Google Scholar 

  37. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  38. Khan, J. et al. Expression profiling in cancer using cDNA microarrays. Electrophoresis 20, 223–229 (1999).

    Article  CAS  Google Scholar 

  39. Chen, Y., Dougherty, E.R. & Bittner, M.L. Ratio-based decisions and the quantitative analysis of cDNA microarray images. Biomed. Optics 2, 364–374 (1997).

    Article  CAS  Google Scholar 

  40. Chen, Y. et al. Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 18,1207–1215 (2002).

    Article  CAS  Google Scholar 

  41. Ringner, M., Peterson, C. & Khan, J. Analyzing array data using supervised methods. Pharmacogenomics 3, 403–415 (2002).

    Article  CAS  Google Scholar 

  42. Yu, Y. & Merlino, G. Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res. 62, 2951–2956 (2002).

    CAS  PubMed  Google Scholar 

  43. Shao, R. et al. Inhibition of nuclear factor-κB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J. Biol. Chem. 272, 32739–32742 (1997).

    Article  CAS  Google Scholar 

  44. Pollack, A.L., Barth, A.I., Altschuler, Y., Nelson, W.J. & Mostov, K.E. Dynamics of β-catenin interactions with APC protein regulate epithelial tubulogenesis. J. Cell Biol. 137, 1651–1662 (1997).

    Article  CAS  Google Scholar 

  45. Khanna, C. et al. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin. Exp. Metastasis 18, 261–271 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Maire for the full-length mouse Six1 expression plasmid, R. Lamb for the full-length human VIL2 construct, and H. Takayama and R. Herring for assistance with the RMS cell lines. This work was supported in part by the Cooperative Human Tissue Network, which is funded by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Merlino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Khan, J., Khanna, C. et al. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10, 175–181 (2004). https://doi.org/10.1038/nm966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing