Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular determinants of resistance to antiandrogen therapy

Abstract

Using microarray-based profiling of isogenic prostate cancer xenograft models, we found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy. This increase in androgen receptor mRNA and protein was both necessary and sufficient to convert prostate cancer growth from a hormone-sensitive to a hormone-refractory stage, and was dependent on a functional ligand-binding domain. Androgen receptor antagonists showed agonistic activity in cells with increased androgen receptor levels; this antagonist-agonist conversion was associated with alterations in the recruitment of coactivators and corepressors to the promoters of androgen receptor target genes. Increased levels of androgen receptor confer resistance to antiandrogens by amplifying signal output from low levels of residual ligand, and by altering the normal response to antagonists. These findings provide insight toward the design of new antiandrogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Androgen receptor expression in hormone-sensitive (HS) and hormone-refractory (HR) xenografts.
Figure 2: Androgen receptor overexpression causes hormone refractory progression.
Figure 3: Androgen receptor expression is necessary for hormone sensitive–to–hormone refractory progression.
Figure 4: Androgen receptor–mediated progression occurs by a ligand-dependent, genotropic mechanism.
Figure 5: Increased androgen receptor expression converts antagonists to agonists.
Figure 6: Increased androgen receptor expression converts antagonists to weak agonists.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Feldman, B.J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001).

    Article  CAS  Google Scholar 

  2. Gelmann, E.P. Molecular biology of the androgen receptor. J. Clin. Oncol. 20, 3001–3015 (2002).

    Article  CAS  Google Scholar 

  3. Balk, S.P. Androgen receptor as a target in androgen-independent prostate cancer. Urology 60, 132–138 (2002).

    Article  Google Scholar 

  4. Taplin, M.E. et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59, 2511–2515 (1999).

    CAS  PubMed  Google Scholar 

  5. Taplin, M.E. et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J. Clin. Oncol. 21, 2673–2678 (2003).

    Article  CAS  Google Scholar 

  6. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9, 401–406 (1995).

    Article  CAS  Google Scholar 

  7. Taplin, M.E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398 (1995).

    Article  CAS  Google Scholar 

  8. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    Article  CAS  Google Scholar 

  9. Matias, P.M. et al. Structural basis for the glucocorticoid response in a mutant human androgen receptor (AR(ccr)) derived from an androgen-independent prostate cancer. J. Med. Chem. 45, 1439–1446 (2002).

    Article  CAS  Google Scholar 

  10. Craft, N., Shostak, Y., Carey, M. & Sawyers, C.L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. 5, 280–285 (1999).

    Article  CAS  Google Scholar 

  11. Gioeli, D. et al. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J. Biol. Chem. 277, 29304–29314 (2002).

    Article  CAS  Google Scholar 

  12. Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–1494 (1995).

    Article  CAS  Google Scholar 

  13. Font de Mora, J. & Brown, M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol. 20, 5041–5047 (2000).

    Article  CAS  Google Scholar 

  14. Tremblay, A., Tremblay, G.B., Labrie, F. & Giguere, V. Ligand-independent recruitment of SRC-1 to estrogen receptor β through phosphorylation of activation function AF-1. Mol. Cell 3, 513–519 (1999).

    Article  CAS  Google Scholar 

  15. Gregory, C.W. et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61, 4315–4319 (2001).

    CAS  PubMed  Google Scholar 

  16. Li, P. et al. Heterogeneous expression and functions of androgen receptor co-factors in primary prostate cancer. Am. J. Pathol. 161, 1467–1474 (2002).

    Article  CAS  Google Scholar 

  17. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  18. Raffo, A.J. et al. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 55, 4438–4445 (1995).

    CAS  PubMed  Google Scholar 

  19. McDonnell, T.J. et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52, 6940–6944 (1992).

    CAS  PubMed  Google Scholar 

  20. Kinoshita, H. et al. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res. 60, 3623–3630 (2000).

    CAS  PubMed  Google Scholar 

  21. Shang, Y., Myers, M. & Brown, M. Formation of the androgen receptor transcription complex. Mol. Cell 9, 601–610 (2002).

    Article  CAS  Google Scholar 

  22. Zhau, H.Y. et al. Androgen-repressed phenotype in human prostate cancer. Proc. Natl. Acad. Sci. USA 93, 15152–15157 (1996).

    Article  CAS  Google Scholar 

  23. Wainstein, M.A. et al. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 54, 6049–6052 (1994).

    CAS  PubMed  Google Scholar 

  24. Ellis, W.J. et al. Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2, 1039–1048 (1996).

    CAS  PubMed  Google Scholar 

  25. Horoszewicz, J.S. et al. LNCaP model of human prostatic carcinoma. Cancer Res. 43, 1809–1818 (1983).

    CAS  PubMed  Google Scholar 

  26. Klein, K.A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408 (1997).

    Article  CAS  Google Scholar 

  27. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  28. Gregory, C.W., Johnson, R.T., Jr., Mohler, J.L., French, F.S. & Wilson, E.M. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 61, 2892–2898 (2001).

    CAS  PubMed  Google Scholar 

  29. Huang, Z.Q., Li, J. & Wong, J. AR possesses an intrinsic hormone-independent transcriptional activity. Mol. Endocrinol. 16, 924–937 (2002).

    Article  CAS  Google Scholar 

  30. Matias, P.M. et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J. Biol. Chem. 275, 26164–26171 (2000).

    Article  CAS  Google Scholar 

  31. Lobaccaro, J.M. et al. Molecular modeling and in vitro investigations of the human androgen receptor DNA-binding domain: application for the study of two mutations. Mol. Cell. Endocrinol. 116, 137–147 (1996).

    Article  CAS  Google Scholar 

  32. Migliaccio, A. et al. Steroid-induced androgen receptor-oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J. 19, 5406–5417 (2000).

    Article  CAS  Google Scholar 

  33. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).

    CAS  PubMed  Google Scholar 

  34. Manolagas, S.C., Kousteni, S. & Jilka, R.L. Sex steroids and bone. Recent Prog. Horm. Res. 57, 385–409 (2002).

    Article  CAS  Google Scholar 

  35. DePrimo, S.E. et al. Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol. 3, RESEARCH0032 (2002).

    Article  Google Scholar 

  36. Masiello, D., Cheng, S., Bubley, G.J., Lu, M.L. & Balk, S.P. Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J. Biol. Chem. 277, 26321–26326 (2002).

    Article  CAS  Google Scholar 

  37. Edwards, J., Krishna, N.S., Grigor, K.M. & Bartlett, J.M. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br. J. Cancer 89, 552–556 (2003).

    Article  CAS  Google Scholar 

  38. Laitinen, S., Karhu, R., Sawyers, C.L., Vessella, R.L. & Visakorpi, T. Chromosomal aberrations in prostate cancer xenografts detected by comparative genomic hybridization. Genes Chromosomes Cancer 35, 66–73 (2002).

    Article  CAS  Google Scholar 

  39. Grad, J.M., Dai, J.L., Wu, S. & Burnstein, K.L. Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA. Mol. Endocrinol. 13, 1896–1911 (1999).

    Article  CAS  Google Scholar 

  40. Craft, N. et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59, 5030–5036 (1999).

    CAS  PubMed  Google Scholar 

  41. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  Google Scholar 

  42. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    Article  CAS  Google Scholar 

  43. Shiau, A.K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  Google Scholar 

  44. Norris, J.D. et al. Peptide antagonists of the human estrogen receptor. Science 285, 744–746 (1999).

    Article  CAS  Google Scholar 

  45. Baek, S.H. et al. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein. Cell 110, 55–67 (2002).

    Article  CAS  Google Scholar 

  46. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    Article  CAS  Google Scholar 

  47. Schellhammer, P.F. et al. Prostate specific antigen decreases after withdrawal of antiandrogen therapy with bicalutamide or flutamide in patients receiving combined androgen blockade. J. Urol. 157, 1731–1735 (1997).

    Article  CAS  Google Scholar 

  48. Sack, J.S. et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc. Natl. Acad. Sci. USA 98, 4904–4909 (2001).

    Article  CAS  Google Scholar 

  49. Zhou, Z.X., Sar, M., Simental, J.A., Lane, M.V. & Wilson, E.M. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J. Biol. Chem. 269, 13115–13123 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Gregory from University of North Carolina–Chapel Hill for providing CWR22 RNA and protein; I. Mellinghoff for reagents; and K. Ellwood-Yen, M. Carey, T. Graber, J. Nicoll, J. Xu, A. Kwon and members of the Sawyers lab for helpful discussions. This work was supported by grants from the National Cancer Institute, Department of Defense and CapCURE. C.L.S. is an Investigator of the Howard Hughes Medical Institute and a Doris Duke Distinguished Clinical Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L Sawyers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Welsbie, D., Tran, C. et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 10, 33–39 (2004). https://doi.org/10.1038/nm972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing