Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis

Abstract

The TAT protein transduction domain (PTD) has been used to deliver a wide variety of biologically active cargo for the treatment of multiple preclinical disease models, including cancer and stroke. However, the mechanism of transduction remains unknown. Because of the TAT PTD's strong cell-surface binding, early assumptions regarding cellular uptake suggested a direct penetration mechanism across the lipid bilayer by a temperature- and energy-independent process. Here we show, using a transducible TAT–Cre recombinase reporter assay on live cells, that after an initial ionic cell-surface interaction, TAT-fusion proteins are rapidly internalized by lipid raft–dependent macropinocytosis. Transduction was independent of interleukin-2 receptor/raft-, caveolar- and clathrin-mediated endocytosis and phagocytosis. Using this information, we developed a transducible, pH-sensitive, fusogenic dTAT-HA2 peptide that markedly enhanced TAT-Cre escape from macropinosomes. Taken together, these observations provide a scientific basis for the development of new, biologically active, transducible therapeutic molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of EGFP requires transduction of TAT-Cre.
Figure 2: TAT-mediated transduction is lipid raft–dependent.
Figure 3: TAT-mediated transduction does not occur by caveolar- or clathrin-mediated endocytosis.
Figure 4: Inhibition of macropinocytosis prevents TAT-Cre–mediated recombination.
Figure 5: Enhancement of transduction by endosomal disruption.

Similar content being viewed by others

References

  1. Mann, D.A. & Frankel, A.D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 10, 1733–1739 (1991).

    Article  CAS  Google Scholar 

  2. Frankel, A. & Pabo, C. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55, 1189–1193 (1988).

    Article  CAS  Google Scholar 

  3. Green, M. & Loewenstein, P. Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55, 1179–1188 (1988).

    Article  CAS  Google Scholar 

  4. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  Google Scholar 

  5. Lindsay, M.A. Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2, 587–594 (2002).

    Article  CAS  Google Scholar 

  6. Cao, G. et al. In Vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22, 5423–5431 (2002).

    Article  CAS  Google Scholar 

  7. Wadia, J.S. & Dowdy, S.F. Modulation of cellular function by TAT mediated transduction of full-length proteins. Curr. Protein Pept. Sci. 4, 97–104 (2003).

    Article  CAS  Google Scholar 

  8. Fawell, S. et al. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664–668 (1994).

    Article  CAS  Google Scholar 

  9. Vives, E., Richard, J.P., Rispal, C. & Lebleu, B. TAT peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci. 4, 125–132 (2003).

    Article  CAS  Google Scholar 

  10. Silhol, M., Tyagi, M., Giacca, M., Lebleu, B. & Vives, E. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur. J. Biochem. 269, 494–501 (2002).

    Article  CAS  Google Scholar 

  11. Console, S., Marty, C., Garcia-Echeverria, C., Schwendener, R. & Ballmer-Hofer, K. Antennapedia and HIV TAT 'protein transduction domains' promote endocytosis of high Mr cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278, 35109–35114 (2003).

    Article  CAS  Google Scholar 

  12. Lundberg, M., Wikstrom, S. & Johansson, M. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8, 143–150 (2003).

    Article  CAS  Google Scholar 

  13. Tyagi, M., Rusnati, M., Presta, M. & Giacca, M. Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 276, 3254–3261 (2001).

    Article  CAS  Google Scholar 

  14. Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  15. Fittipaldi, A. et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 tat fusion proteins. J. Biol. Chem. 278, 34141–34149 (2003).

    Article  CAS  Google Scholar 

  16. Liu, N.Q. et al. Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol. 76, 6689–6700 (2002).

    Article  CAS  Google Scholar 

  17. Anderson, R.G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    Article  CAS  Google Scholar 

  18. Nichols, B.J. & Lippincott-Schwartz, J. Endocytosis without clathrin coats. Trends Cell Biol. 11, 406–412 (2001).

    Article  CAS  Google Scholar 

  19. Razani, B., Woodman, S.E. & Lisanti, M.P. Caveolae: from cell biology to animal physiology. Pharmacol. Rev. 54, 431–467 (2002).

    Article  CAS  Google Scholar 

  20. West, M.A., Bretscher, M.S. & Watts, C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J. Cell Biol. 109, 2731–2739 (1989).

    Article  CAS  Google Scholar 

  21. Sampath, P. & Pollard, T.D. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry 30, 1973–1980 (1991).

    Article  CAS  Google Scholar 

  22. Torchilin, V.P., Rammohan, R., Weissig, V. & Levchenko, T.S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA 98, 8786–8791 (2001).

    Article  CAS  Google Scholar 

  23. Lewin, M. et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000).

    Article  CAS  Google Scholar 

  24. Seglen, P.O., Grinde, B. & Solheim, A.E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur. J. Biochem. 95, 215–225 (1979).

    Article  CAS  Google Scholar 

  25. Skehel, J.J., Cross, K., Steinhauer, D. & Wiley, D.C. Influenza fusion peptides. Biochem. Soc. Trans. 29, 623–626 (2001).

    Article  CAS  Google Scholar 

  26. Han, X., Bushweller, J.H., Cafiso, D.S. & Tamm, L.K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol. 8, 715–720 (2001).

    Article  CAS  Google Scholar 

  27. Araki, N., Johnson, M.T. & Swanson, J.A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J. Cell Biol. 135, 1249–1260 (1996).

    Article  CAS  Google Scholar 

  28. Oliver, J.M., Berlin, R.D. & Davis, B.H. Use of horseradish peroxidase and fluorescent dextrans to study fluid pinocytosis in leukocytes. Methods Enzymol. 108, 336–347 (1984).

    Article  CAS  Google Scholar 

  29. Meier, O. et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158, 1119–1131 (2002).

    Article  CAS  Google Scholar 

  30. Norbury, C.C., Hewlett, L.J., Prescott, A.R., Shastri, N. & Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3, 783–791 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Ruley and M. Bessler for providing cell lines; B. Meade, I. Kaplan and L. Gross for technical assistance; and M. Becker-Hapak for critical input. This work was supported by the Howard Hughes Medical Institute (to S.F.D.) and the National Institutes of Health (CA96098 to S.F.D. and HL065418 to R.V.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F Dowdy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadia, J., Stan, R. & Dowdy, S. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10, 310–315 (2004). https://doi.org/10.1038/nm996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing