Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers

Abstract

Stimuli-responsive (active) materials undergo large-scale shape or property changes in response to an external stimulus such as stress, temperature, light or pH1,2. Technological uses range from durable, shape-recovery eye-glass frames, to temperature-sensitive switches, to the generation of stress to induce mechanical motion3,4,5,6,7,8,9. Here, we demonstrate that the uniform dispersion of 1–5 vol.% of carbon nanotubes in a thermoplastic elastomer yields nanocomposites that can store and subsequently release, through remote means, up to 50% more recovery stress than the pristine resin. The anisotropic nanotubes increase the rubbery modulus by a factor of 2 to 5 (for 1–5 vol.%) and improve shape fixity by enhancing strain-induced crystallization. Non-radiative decay of infrared photons absorbed by the nanotubes raises the internal temperature, melting strain-induced polymer crystallites (which act as physical crosslinks that secure the deformed shape) and remotely trigger the release of the stored strain energy. Comparable effects occur for electrically induced actuation associated with Joule heating of the matrix when a current is passed through the conductive percolative network of the nanotubes within the resin. This unique combination of properties, directly arising from the nanocomposite morphology, demonstrates new opportunities for the design and fabrication of stimuli-responsive polymers, which are otherwise not available in one material system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrographs of fracture surfaces of a Morthane nanocomposite containing 5.9 vol.% (10 wt%) PR-HT-19 CNTs.
Figure 2: Optical images of the shape- and stress recovery of PCNs.
Figure 3: Comparison of the impact of CNTs and carbon black on the constrained stress-recovery behaviour of neat Morthane.
Figure 4: Morphological characteristics of CNTs on deformation.

Similar content being viewed by others

References

  1. Lendlein, A. & Kelch, S. Shape memory polymers. Angew. Chem. Int. Edn 41, 2034–2057 (2002).

    Article  CAS  Google Scholar 

  2. Wei, Z.G., Sandstroroem, R. & Miyazaki, S. Shape-memory materials and hybrid composites for smart systems: Part I shape-memory materials. J. Mater. Sci. 33, 3743–3762 (1998).

    Article  CAS  Google Scholar 

  3. Irie, M. Shape memory polymers. (Cambridge Univ. Press, Cambridge, UK, 1998).

    Google Scholar 

  4. Lendlein, A. & Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673–1676 (2002).

    Article  Google Scholar 

  5. Monkman, G.J. Advances in shape memory polymer actuation. Mechatronics 10, 489–498 (2000).

    Article  Google Scholar 

  6. Liu, C. et al. Chemically crosslinked polycyclooctene: synthesis, characterization and shape memory behaviour. Macromolecules 35, 9868–9874 (2002).

    Article  CAS  Google Scholar 

  7. Jeong, H.M., Ahn, B.K. & Kim, B.K. Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. Eur. Polym. J. 37, 2245–2252 (2001).

    Article  CAS  Google Scholar 

  8. Li, F., Qi, L., Yang, J., Xu, M., Luo, X. & Ma, D. Polyurethane/conducting carbon black composites: structure, electrical conductivity, strain recovery behaviour and their relationships. J. Appl. Polym. Sci. 75, 68–77 (2000).

    Article  CAS  Google Scholar 

  9. Tobushi, H., Hara, H., Yamada, E. & Hayashi, S. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater. Struct. 5, 483–491 (1996).

    Article  CAS  Google Scholar 

  10. Otsuka, K. & Wayman, C.M. (eds) Shape Memory Materials (Cambridge Univ. Press, UK, 1998).

    Google Scholar 

  11. Gall, K. et al. Shape memory polymer nanocomposites. Acta Mater. 50, 5115–5126 (2002).

    Article  CAS  Google Scholar 

  12. Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E. & Winey, K.I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219 (2000).

    Article  CAS  Google Scholar 

  13. Qian, D., Dickey, E.C., Andrews, R. & Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polymer composites. Appl. Phys. Lett. 76, 2868–2870 (2000).

    Article  CAS  Google Scholar 

  14. Cooper, C.A., Ravicha, D., Lips, D., Mayer, J. & Wagne, H.D. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos. Sci. Technol. 62, 1105–1112 (2002).

    Article  CAS  Google Scholar 

  15. Watts, P.C.P. et al. A low resistance boron-doped nanotube-polystyrene composite. J. Mater. Chem. 11, 2482–2488 (2001).

    Article  CAS  Google Scholar 

  16. Kymakis, E., Alexandou, I. & Amaratunga G.A.J. Single walled carbon nanotube-polymer composites: electrical, optical and structural investigation. Synth. Met. 127, 59–62 (2002).

    Article  CAS  Google Scholar 

  17. Pinniavaia, T.J. & Beal, G.W. (eds) Polymer Clay Nanocomposites (Wiley, New York, 2000).

    Google Scholar 

  18. Jeon, H.G., Mather, P.T. & Haddad, T.S. Shape memory and nanostructure in poly(norbonyl-POSS) copolymers. Polym. Int. 49, 453–457 (2000).

    Article  CAS  Google Scholar 

  19. Wang, C.-S. & Alexander, M.D. Method of forming conductive polymeric nanocomposite materials and materials produced thereby. US Patent 09/932,169 (2001).

  20. Koerner, H. et al. in 225th ACS National Meeting, New Orleans, USA, 23–27 March 2003 Talk no. MTLS-017 (American Chemical Society, Washington, DC, USA).

  21. Taya, M., Kim, W.J. & Ono, K. Piezoresistivity of a short fiber/elastomer matrix composite. Mech. Mater. 28, 53–59 (1998).

    Article  Google Scholar 

  22. Boyce, M.C., Socrate, S., Kear, K., Yeh, O. & Shaw, K. Micromechanisms of deformation and recovery in thermoplastic vulcanizates. J. Mech. Phys. Solids 49, 1323–1342 (2001).

    Article  CAS  Google Scholar 

  23. Bergstroem, J.S. & Boyce M.C. Large strain time-dependent behaviour of filled elastomers. Mech. Mater. 32, 627–644 (2000).

    Article  Google Scholar 

  24. Lusti, H.R., Hine, P.J. & Gusev, A.A. Direct numerical predictions for the elastic and thermoplastic properties of short fibre composites. Compos. Sci. Technol. 62, 1927–1934 (2002).

    Article  CAS  Google Scholar 

  25. Fornes, T.D. & Paul, D.R. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003).

    Article  CAS  Google Scholar 

  26. Koerner, H. et al. Structural studies of extension-induced mesophase formation in poly(diethylsiloxane) elastomers: In situ synchrotron WAXS and SAXS. Macromolecules 36, 1975–1981 (2003).

    Article  CAS  Google Scholar 

  27. Grady, B.P., Pompeo, F., Shambaugh, R.L. & Resasco, D.E. Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J. Phys. Chem. B 106, 5852–5858 (2002).

    Article  CAS  Google Scholar 

  28. Doufas, A.K., McHugh, A.J. & Miller, C. Simulation of melt spinning including flow-induced crystallization, part I: Model development and predictions. J. Non-Newton. Fluid 92, 27–66 (2000).

    Article  CAS  Google Scholar 

  29. Kubayashi, K. & Hayashi, S. Woven fabric made of shape memory polymer. US Patent 5,128,197 (1992).

  30. Alexander, L.E. X-Ray Diffraction Methods in Polymer Science (Robert E. Kereger, New York, 1979).

    Google Scholar 

Download references

Acknowledgements

Fruitful discussions with B. Taylor and C.-S. Wang on sample preparation and conductivity measurements, B. Hsiao and I. Sics on utilization of X27C Beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL) and P. Mather are gratefully acknowledged. The Air Force Office of Scientific Research and the Air Force Research Laboratory, Materials and Manufacturing Directorate provided financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Vaia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 862 kb)

Supplementary Information, Fig. S3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koerner, H., Price, G., Pearce, N. et al. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Mater 3, 115–120 (2004). https://doi.org/10.1038/nmat1059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing