Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers

Abstract

Magnetically engineered magnetic tunnel junctions (MTJs) show promise as non-volatile storage cells in high-performance solid-state magnetic random access memories (MRAM)1. The performance of these devices is currently limited by the modest (<70%) room-temperature tunnelling magnetoresistance (TMR) of technologically relevant MTJs. Much higher TMR values have been theoretically predicted for perfectly ordered (100) oriented single-crystalline Fe/MgO/Fe MTJs. Here we show that sputter-deposited polycrystalline MTJs grown on an amorphous underlayer, but with highly oriented (100) MgO tunnel barriers and CoFe electrodes, exhibit TMR values of up to 220% at room temperature and 300% at low temperatures. Consistent with these high TMR values, superconducting tunnelling spectroscopy experiments indicate that the tunnelling current has a very high spin polarization of 85%, which rivals that previously observed only using half-metallic ferromagnets2. Such high values of spin polarization and TMR in readily manufactureable and highly thermally stable devices (up to 400 °C) will accelerate the development of new families of spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Giant room-temperature TMR.
Figure 2: Highly oriented (100) MgO tunnel barrier.
Figure 3: Anneal dependence of TMR and RA measured using the current-in-plane tunnelling measurement technique on an unpatterned MTJ film.
Figure 4: Temperature dependence of TMR (filled circles) and RA (squares) for the same magnetic tunnel junctions shown in Fig. 1.
Figure 5: Measurement of tunnelling spin-polarization.

Similar content being viewed by others

References

  1. Parkin, S. S. P. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003).

    Article  CAS  Google Scholar 

  2. Parker, J. S., Watts, S. M., Ivanov, P. G. & Xiong, P. Spin polarization of CrO2 at and across an artificial barrier. Phys. Rev. Lett. 88, 196601 (2002).

    Article  CAS  Google Scholar 

  3. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  4. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  Google Scholar 

  5. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mat. 139, L231–L234 (1995).

    Article  CAS  Google Scholar 

  6. Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994).

    Article  Google Scholar 

  7. Maekawa, S. & Shinjo, T. (eds) Spin Dependent Transport in Magnetic Nanostructures (Taylor & Francis, London, 2002).

    Google Scholar 

  8. Sun, J. Z., Abraham, D. W., Roche, K. & Parkin, S. S. P. Temperature and bias dependence of magnetoresistance in doped manganite thin film trilayer junctions. Appl. Phys. Lett. 73, 1008–1010 (1998).

    Article  CAS  Google Scholar 

  9. Jo, M. -H., Mathur, N. D., Todd, N. K. & Blamire, M. G. Very large magnetoresistance and coherent switching in half-metallic manganite tunnel junctions. Phys. Rev. B 61, R14905–R14908 (2000).

    Article  CAS  Google Scholar 

  10. O'Donnell, J., Andrus, A. E., Oh, S., Colla, E. V. & Eckstein, J. N. Colossal magnetoresistance magnetic tunnel junctions grown by molecular-beam epitaxy. Appl. Phys. Lett. 76, 1914–1916 (2000).

    Article  CAS  Google Scholar 

  11. Bowen, M. et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl. Phys. Lett. 82, 233–235 (2003).

    Article  CAS  Google Scholar 

  12. Worledge, D. C. & Geballe, T. H. Maki analysis of spin-polarized tunneling in an oxide ferromagnet. Phys. Rev. B 62, 447–451 (2000).

    Article  CAS  Google Scholar 

  13. Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

    Article  CAS  Google Scholar 

  14. Wang, D., Nordman, C., Daughton, J. M., Qian, Z. & Fink, J. 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40, 2269–2271 (2004).

    Article  CAS  Google Scholar 

  15. Mavropoulos, P., Papanikolaou, N. & Dederichs, P. H. Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions. Phys. Rev. Lett. 85, 1088–1091 (2000).

    Article  CAS  Google Scholar 

  16. Butler, W. H., Zhang, X. -G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|verbar;MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  Google Scholar 

  17. Mathon, J. & Umerski, A. Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B 63, 220403 (2001).

    Article  Google Scholar 

  18. Bowen, M. et al. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001). Appl. Phys. Lett. 79, 1655–1657 (2001).

    Article  CAS  Google Scholar 

  19. Faure-Vincent, J. et al. High tunnel magnetoresistance in epitaxial Fe/MgO/Fe tunnel junctions. Appl. Phys. Lett. 82, 4507–4509 (2003).

    Article  CAS  Google Scholar 

  20. Yuasa, S., Fukushima, A., Nagahama, T., Ando, K. & Suzuki, Y. High tunnel magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due to coherent spin-polarized tunneling. Jpn J. Appl. Phys. 43, L588–L590 (2004).

    Article  CAS  Google Scholar 

  21. Worledge, D. C. & Trouilloud, P. L. Magnetoresistance measurement of unpatterned magnetic tunnel junction wafers by current-in-plane tunneling. Appl. Phys. Lett. 83, 84–86 (2003).

    Article  CAS  Google Scholar 

  22. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).

    Article  Google Scholar 

  23. Mitani, S., Moriyama, T. & Takanashi, K. Fe/MgO/FeCo(100) epitaxial magnetic tunnel junctions prepared by using in situ plasma oxidation. J. Appl. Phys. 93, 8041–8043 (2003).

    Article  CAS  Google Scholar 

  24. Kiyomura, T., Maruo, Y. & Gomi, M. Electrical properties of MgO insulating layers in spin-dependent tunneling junctions using Fe3O4. J. Appl. Phys. 88, 4768–4771 (2000).

    Article  CAS  Google Scholar 

  25. Bredow, T. & Gerson, A. R. Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys. Rev. B 61, 5194–5201 (2000).

    Article  CAS  Google Scholar 

  26. Pedersen, R. J. & Vernon, F. L. Effect of film resistance on low-impedance tunneling measurements. Appl. Phys. Lett. 10, 29–31 (1967).

    Article  CAS  Google Scholar 

  27. Veerdonk, R. J. M. v. d., Nowak, J., Meservey, R., Moodera, J. S. & Jonge, W. J. M. d. Current distribution effects in magnetoresistive tunnel junctions. Appl. Phys. Lett. 71, 2839–2841 (1997).

    Article  Google Scholar 

  28. De Teresa, J. M. et al. Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).

    Article  CAS  Google Scholar 

  29. Reohr, W. et al. Memories of tomorrow. IEEE Circuits Device 18, 17–27 (2002).

    Article  Google Scholar 

  30. Meyerheim, H. L. et al. Geometrical and compositional structure at metal-oxide interfaces: MgO on Fe(001). Phys. Rev. Lett. 87, 076102 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Daniel Worledge for the CIPT measurements. Christian Kaiser is also at RWTH Aachen, Physikalisches Institut (IIA), 52056 Aachen, Germany. This work is partially supported by the DARPA spintronics and SPINS programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkin, S., Kaiser, C., Panchula, A. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater 3, 862–867 (2004). https://doi.org/10.1038/nmat1256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing