Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-infrared optical sensors based on single-walled carbon nanotubes

Abstract

Molecular detection using near-infrared light between 0.9 and 1.3 eV has important biomedical applications because of greater tissue penetration and reduced auto-fluorescent background in thick tissue or whole-blood media. Carbon nanotubes have a tunable near-infrared emission that responds to changes in the local dielectric function but remains stable to permanent photobleaching. In this work, we report the synthesis and successful testing of solution-phase, near-infrared sensors, with β-D-glucose sensing as a model system, using single-walled carbon nanotubes that modulate their emission in response to the adsorption of specific biomolecules. New types of non-covalent functionalization using electron-withdrawing molecules are shown to provide sites for transferring electrons in and out of the nanotube. We also show two distinct mechanisms of signal transduction—fluorescence quenching and charge transfer. The results demonstrate new opportunities for nanoparticle optical sensors that operate in strongly absorbing media of relevance to medicine or biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-covalent functionalization of SWNTs suspended using glucose oxidase (GOx) in solution.
Figure 2: Structure-dependant functionalization of glucose oxidase-suspended SWNTs using ferricyanide.
Figure 3: Elucidating the mechanism of signal transduction.
Figure 4: Synthesis of enzyme-suspended nanotubes.
Figure 5: Glucose detection using a carbon-nanotube optical sensor.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).

    Google Scholar 

  2. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  3. Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Article  Google Scholar 

  4. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  Google Scholar 

  5. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  6. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  7. Hartschuh, A., Pedrosa, H. N., Novotny, L. & Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003).

    Article  CAS  Google Scholar 

  8. McCartney, L. J., Pickup, J. C., Rolinski, O. J. & Birch, D. J. S. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Anal. Biochem. 292, 216–221 (2001).

    Article  CAS  Google Scholar 

  9. Salins, L. L. E., Ware, R. A., Ensor, C. M. & Daunert, S. A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein. Anal. Biochem. 294, 19–26 (2001).

    Article  CAS  Google Scholar 

  10. Wray, S., Cope, M., Delpy, D., Wyatt, J. & Reynolds, E. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta 933, 184–192 (1988).

    Article  CAS  Google Scholar 

  11. Klonis, N., Quazi, N. H., Deady, L., W., Hughes, A. B. & Tilley, L. Characterization of a series of far-red-absorbing thiobarbituric acid oxonol derivatives as fluorescent probes for biological applications. Anal. Biochem. 317, 47–58 (2003).

    Article  CAS  Google Scholar 

  12. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  13. Saxena, V., Sadoqi, M. & Shao, J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci. 92, 2090–2097 (2003).

    Article  CAS  Google Scholar 

  14. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Bio. 7, 626–634 (2003).

    Article  CAS  Google Scholar 

  15. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  16. Bahr, J. L. & Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952–1958 (2002).

    Article  CAS  Google Scholar 

  17. Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001).

    Article  CAS  Google Scholar 

  18. Strano, M. S. et al. Reversible, band-gap selective protonation of single-walled carbon nanotubes. J. Phys. Chem. B 107, 6979–6985 (2003).

    Article  CAS  Google Scholar 

  19. Strano, M. S. et al. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3, 81–86 (2003).

    Article  CAS  Google Scholar 

  20. Moore, V. C. et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003).

    Article  CAS  Google Scholar 

  21. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  22. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  23. Doorn, S. K., Heller, D. A., Barone, P. W., Usrey, M. L. & Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 78, 1147–1155 (2004).

    Article  CAS  Google Scholar 

  24. Saito, R. et al. Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2002).

    Article  CAS  Google Scholar 

  25. Saito, R. et al. Double resonance Raman spectra in disordered graphite and single wall carbon nanotubes. Mol. Cryst. Liq. Cryst. 387, 287–296 (2002).

    Google Scholar 

  26. Saito, R. et al. Chirality-dependent G-band Raman intensity of carbon nanotubes. Phys. Rev. B 64, 085312 (2001).

    Article  Google Scholar 

  27. Xia, L. & McCreery, R. L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy. J. Electrochem. Soc. 146, 3696–3701 (1999).

    Article  CAS  Google Scholar 

  28. Okazaki, K., Nakato, Y. & Murakoshi, K. Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Phys. Rev. B 68, 035434 (2003).

    Article  Google Scholar 

  29. Lu, J., R., Su, T., Georganopoulou, D. & Williams, D. E. Interfacial dissociation and unfolding of glucose oxidase. J. Phys. Chem. B 107, 3954–3962 (2003).

    Article  CAS  Google Scholar 

  30. Saal, K. et al. Characterization of glucose oxidase immobilization onto mica carrier by atomic force microscopy and kinetic studies. Biomol. Eng. 19, 195–199 (2002).

    Article  CAS  Google Scholar 

  31. Nakano, K., Doi, K., Tamura, K., Katsumi, Y. & Tazaki, M. Self-assembling monolayer formation of glucose oxidase covalently attached on 11-aminoundecanethiol monolayers on gold. Chem. Comm. 1544–1545 (2003).

  32. Heller, A. Implanted electrochemical glucose sensors for the management of diabetes. Annu. Rev. Biomed. Eng. 1, 153–175 (1999).

    Article  CAS  Google Scholar 

  33. Guiseppi-Elie, A., Lei, C. & Baughman, R. H. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol. 13, 559–564 (2002).

    Article  CAS  Google Scholar 

  34. Peter, L. M. Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753–769 (1990).

    Article  CAS  Google Scholar 

  35. Tantra, R., Hutton, R. S. & Williams, D. E. A biosensor based on transient photoeffects at a silicon electrode. J. Electroanal. Chem. 538, 205–208 (2002).

    Article  Google Scholar 

  36. Garjonyte, R., Yigzaw, Y., Meskys, R., Malinauskas, A. & Gorton, L. Prussian Blue- and lactate oxidase-based amperometric biosensor for lactic acid. Sensors Actuat. B 79, 33–38 (2001).

    Article  CAS  Google Scholar 

  37. Moscone, D., D'Ottavi, D., Compagnone, D., Palleschi, G. & Amine, A. Construction and analytical characterization of Prussian Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal. Chem. 73, 2529–2535 (2001).

    Article  CAS  Google Scholar 

  38. Karyakin, A. A., Karyakina, E. E. & Gorton, L. Amperometric biosensor for glutamate using Prussian Blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal. Chem. 72, 1720–1723 (2000).

    Article  CAS  Google Scholar 

  39. Karyakin, A. A., Karyakina, E. E. & Gorton, L. Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta 43, 1597–1606 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the National Science Foundation (grant no. CTS-0330350), the School of Chemical Sciences at UIUC, and a grant from the Molecular Electronics group, Dupont Co. The authors thank J. Bahr for providing the blood specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information, Fig S1 (PDF 1439 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, P., Baik, S., Heller, D. et al. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Mater 4, 86–92 (2005). https://doi.org/10.1038/nmat1276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing