Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends

Abstract

Converting solar energy into electricity provides a much-needed solution to the energy crisis the world is facing today. Polymer solar cells have shown potential to harness solar energy in a cost-effective way. Significant efforts are underway to improve their efficiency to the level of practical applications. Here, we report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene. Controlling the active layer growth rate results in an increased hole mobility and balanced charge transport. Together with increased absorption in the active layer, this results in much-improved device performance, particularly in external quantum efficiency. The power-conversion efficiency of 4.4% achieved here is the highest published so far for polymer-based solar cells. The solution process involved ensures that the fabrication cost remains low and the processing is simple. The high efficiency achieved in this work brings these devices one step closer to commercialization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of thermal annealing and film growth rate on the performance of the plastic solar cells.
Figure 2: Effect of film growth rate on EQE of polymer solar cells.
Figure 3: Effect of film growth rate on the mobility of charge carriers in the active layer.
Figure 4: Effect of film growth rate and thermal annealing on the absorbance of the P3HT/PCBM films.
Figure 5: Effect of growth rate and thermal annealing on the morphology of the active layer.

Similar content being viewed by others

References

  1. Brabec, C. J., Sariciftci, N. S. & Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001).

    Article  Google Scholar 

  2. Coakley, K. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).

    Article  Google Scholar 

  3. Brabec, C. J. Organic photovoltaics: technology and market. Solar Energy Mater. Solar Cells 83, 273–292 (2004).

    Article  Google Scholar 

  4. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    Article  Google Scholar 

  5. Padinger, F., Rittberger, R. S. & Sariciftci, N. S. Effects of post production treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003).

    Article  Google Scholar 

  6. Walduf, C., Schilinsky, P., Hauch, J. & Brabec, C. J. Material and device concepts for organic photovoltaics: towards competitive efficiencies. Thin Solid Films 451–452, 503–507 (2004).

    Article  Google Scholar 

  7. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  Google Scholar 

  8. Saraciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  Google Scholar 

  9. Peumans, P., Uchida, S. & Forrest, S. R. Efficient bulk-heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

    Article  Google Scholar 

  10. Yang, F., Shtein, M. & Forrest, S. R. Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nature Mater. 4, 37–41 (2005).

    Article  Google Scholar 

  11. Chirvase, D., Parisi, J., Hummelen, J. C. & Dyakonov, V. Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 15, 1317–1323 (2004).

    Article  Google Scholar 

  12. Shrotriya, V., Ouyang, J., Tseng, R. J., Li, G. & Yang, Y. Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films. Chem. Phys. Lett. 411, 138–143 (2005).

    Article  Google Scholar 

  13. Grevin, B., Rannou, P., Payerne, R., Pron, A. & Travers, J. P. Multi-scale scanning tunneling microscopy imaging of self-organized regioregular poly(3-hexylthiophene) films. J. Chem. Phys. 118, 7097–7102 (2003).

    Article  Google Scholar 

  14. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  Google Scholar 

  15. Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).

    Article  Google Scholar 

  16. Melzer, C., Koop, E. J., Mihailetchi, V. D. & Blom, P. W. M. Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 865–870 (2004).

    Article  Google Scholar 

  17. Shirland, F. The history, design, fabrication and performance of CdS thin film solar cells. Adv. Energy Conversion 6, 201–222 (1966).

    Article  Google Scholar 

  18. Li, G., Shrotriya, V., Yao, Y. & Yang, Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J. Appl. Phys. 98, 043704 (2005).

    Article  Google Scholar 

  19. Choulis, S. A. et al. Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Appl. Phys. Lett. 83, 3812–3814 (2003).

    Article  Google Scholar 

  20. Mihailetchi, V. D. et al. Compositional dependence of the performance of poly(p-phenylenevinylene):methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 15, 795–801 (2005).

    Article  Google Scholar 

  21. Goodman, A. M. & Rose, A. Double extraction of uniformly generated electron–hole pairs from insulators with noninjecting contacts. J. Appl. Phys. 42, 2823–2830 (1971).

    Article  Google Scholar 

  22. Snaith, H. L., Greenham, N. C. & Friend, R. H. The origin of collected charge and open-circuit voltage in blended polyfluorene photovoltaic devices. Adv. Mater. 16, 1640–1645 (2004).

    Article  Google Scholar 

  23. Sunderberg, M., Inganas, O., Stafstrom, S., Gustafsson, G. & Sjogren, B. Optical absorption of poly(3-alkylthiophenes) at low temperatures. Solid State Commun. 71, 435–439 (1989).

    Article  Google Scholar 

  24. Prosa, T. J., Moulton, J., Heeger, A. J. & Winokur, M. J. Diffraction line-shape analysis of poly(3-docecylthiophene): A study of layer disorder through the liquid crystalline polmer transition. Macromolecules 32, 4000–4009 (1999).

    Article  Google Scholar 

  25. Aasmundtveit, K. E. et al. Structural anisotropy of poly(alkylthiophene) films. Macromolecules 33, 3120–3127 (2000).

    Article  Google Scholar 

  26. Samuelsen, E. J., Breiby, D. W., Konovalov, O., Struth, B. & Smilgies, D. -M. In situ studies of transition from solution to solid film of poly(octylthiophene). Synth. Met. 123, 165–170 (2001).

    Article  Google Scholar 

  27. Schilinsky, P., Waldauf, C., Hauch, J. & Brabec, C. J. Simulation of light intensity dependent current characteristics of polymer solar cells. J. Appl. Phys. 95, 2816–2819 (2004).

    Article  Google Scholar 

  28. Mozer, A. J. et al. Novel regiospecific MDMO-PPV copolymer with improved charge transport for bulk heterojunction solar cells. J. Phys. Chem. B 108, 5235–5242 (2004).

    Article  Google Scholar 

  29. Xue, J., Uchida, S., Rand, B. P. & Forrest, S. R. 4.2% efficient organic photovoltaic cells with low series resistance. Appl. Phys. Lett. 84, 3013–3015 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Ouyang for very helpful technical discussions. This research work is supported in part by the Office of Naval Research (grant no. N00014-01-1-0136, program manager P. Armistead), and the Air Force Office of Scientific Research (grant no. F49620-03-1-0101, program manager C. Lee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Shrotriya, V., Huang, J. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater 4, 864–868 (2005). https://doi.org/10.1038/nmat1500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing