Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust free-standing nanomembranes of organic/inorganic interpenetrating networks

Abstract

Hybrid sol–gel materials have been a subject of intensive research during the past decades because these nanocomposites combine the versatility of organic polymers with the superior physical properties of glass. Here, we report the synthesis, by spin coating, of hybrid interpenetrating networks in the form of free-standing nanomembrane (around 35-nm thick) with unprecedented macroscopic size and characteristics. The quasi-2D interpenetration of the organic and inorganic networks brings to these materials a unique combination of properties that are not usually compatible within the same film: macroscopic robustness and homogeneity, nanoscale thickness, mechanical strength, high flexibility and optical transparency. Interestingly, such free-standing nanofilms of macroscopic size can seal large openings, are strong enough to hold amounts of liquid 70,000 times heavier than their own weight, and are flexible enough to reversibly pass through holes 30,000 times smaller than their own size.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparative procedure for self-supporting hybrid IPN nanofilm.
Figure 2: Characterization of a 40-nm-thick hybrid IPN layer synthesized by spin-coating.
Figure 3: AFM observations of a Hybrid_2 nanofilm deposited on a silicon wafer.
Figure 4: Microscopic characterization of free-standing hybrid nanofilms.
Figure 5: Model nanostructures of free-standing hybrid nanomembranes of interpenetrating networks.
Figure 6: Manipulation and properties of a 35-nm-thick Hybrid_1 self-supporting nanomembrane.

Similar content being viewed by others

References

  1. Stroock, A., Kane, R. S., Weck, M., Metallo, S. J. & Whitesides, G. M. Synthesis of free-standing quasi-two-dimensional polymers. Langmuir 19, 2466–2472 (2003).

    Article  Google Scholar 

  2. Jiang, C., Markutsya, S., Pikus, Y. & Tsukruk, V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater. 3, 721–727 (2004).

    Article  Google Scholar 

  3. O'Connel, P. A. & McKenna, G. B. Rheological measurements of thermoviscoelastic response of ultrathin polymer films. Science 307, 1760–1763 (2005).

    Article  Google Scholar 

  4. Mattsson, J., Forrest, J. A. & Borjesson, L. Quantifying glass transition behaviour in ultrathin free-standing polymer films. Phys. Rev. E 62, 5187–5200 (2000).

    Article  Google Scholar 

  5. Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    Article  Google Scholar 

  6. Mallwitz, F. & Laschewsky, A. Direct access to stable, freestanding polymer membranes by layer-by-layer assembly of polyelectrolytes. Adv. Mater. 17, 1296–1299 (2005).

    Article  Google Scholar 

  7. Mamedov, A. et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multiplayer composites. Nature Mater. 1, 190–194 (2002).

    Article  Google Scholar 

  8. Huck, W. T., Stroock, A. D. & Whitesides, G. M. Synthesis of geometrically well-defined, molecularly thin polymer films. Angew. Chem. Int. Edn 39, 1058–1061 (2000).

    Article  Google Scholar 

  9. Mamedov, A. & Kotov, N. Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir 16, 5530–5533 (2000).

    Article  Google Scholar 

  10. Mallwitz, F. & Goedel, W. A. Physically cross-linked ultrathin elastomeric membranes. Angew. Chem. Int. Edn 40, 2645–2647 (2001).

    Article  Google Scholar 

  11. Eck, W., Küller, A., Grunze, M., Völkel, B. & Gölzhäuser, A. Freestanding nanosheets from crosslinked biphenyl self-assembled monolayers. Adv. Mater. 17, 2583–2587 (2005).

    Article  Google Scholar 

  12. Xu, H. & Goedel, W. A. Polymer-silica hybrid monolayers as precursors for ultrathin free-standing porous membranes. Langmuir 18, 2363–2367 (2002).

    Article  Google Scholar 

  13. Nardin, C., Winterhalter, M. & Meier, W. Giant free-standing ABA triblock copolymer membranes. Langmuir 16, 7708–7712 (2000).

    Article  Google Scholar 

  14. Jiang, C., Markutsya, C. & Tsukruk, V. Compliant, robust, and truly nanoscale free-standing multilayer films fabricated using spin-assisted layer-by-layer assembly. Adv. Mater. 16, 157–161 (2004).

    Article  Google Scholar 

  15. Markutsya, S., Jiang, C., Pikus, Y. & Tsukruk, V. Freely suspended layer-by-layer nanomembranes: testing micromechanical properties. Adv. Funct. Mater. 15, 771–780 (2005).

    Article  Google Scholar 

  16. Jiang, C., Markutsya, S., Shulda, H. & Tsukruk, V. Freely suspended gold nanoparticle arrays. Adv. Mater. 17, 1669–1673 (2005).

    Article  Google Scholar 

  17. Ko, H., Jiang, C., Shulda, H. & Tsukruk, V. Carbon nanotube arrays encapsulated into freely suspended flexible films. Chem. Mater. 17, 2490–2493 (2005).

    Article  Google Scholar 

  18. Decher, G. Fuzzy nanoassemblies toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  Google Scholar 

  19. Johal, M. S. et al. Polyelectrolyte trilayer combinations using spin-assembly and ionic self-assembly. Langmuir 19, 8876–8881 (2003).

    Article  Google Scholar 

  20. Hashizume, M. & Kunitake, T. Preparation of self-supporting ultrathin films of titania by spin-coating. Langmuir 19, 10172–10178 (2003).

    Article  Google Scholar 

  21. Hashizume, M. & Kunitake, T. Preparation and functionalization of self-supporting (polymer/metal oxide) composite ultrathin films. RIKEN Rev. 38, 36–39 (2001).

    Google Scholar 

  22. Sharp, K. G. Inorganic/organic hybrid materials. Adv. Mater. 10, 1243–1248 (1998).

    Article  Google Scholar 

  23. Matejka, L. & Dukh, O. Organic-inorganic hybrids networks. Macromol. Symp. 171, 181–188 (2001).

    Article  Google Scholar 

  24. Saegusa, T. Organic-inorganic polymers hybrids. Pure Appl. Chem. 67, 1965–1970 (1995).

    Article  Google Scholar 

  25. Imai, Y., Naka, K. & Chujo, Y. Reversible formation of interpenatrating polymer network structure in organic-inorganic polymer hybrids. Polym. J. 30, 990–995 (1998).

    Article  Google Scholar 

  26. Tamaki, R., Naka, K. & Chujo, Y. Synthesis of polystyrene/silica gel polymer hybrids by in situ polymerisation method. Polym. Bull. 39, 303–310 (1997).

    Article  Google Scholar 

  27. Sperling, L. H. & Mishra, V. The current status of interpenetrating polymer networks. Polym. Adv. Technol. 7, 197–208 (1996).

    Article  Google Scholar 

  28. Chang, S. & Doong, R. ZrO2 thin films with controllable morphology and thickness by spin-coated sol-gel method. Thin Solid Films 489, 17–22 (2005).

    Article  Google Scholar 

  29. Polli, A. D. et al. Structural characterisation of ZrO2 thin films produced via self-assembled monolayer-mediated deposition from aqueous dispersions. Thin Solid Films 379, 122–127 (2000).

    Article  Google Scholar 

  30. Sanchez, C. et al. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chem. Mater. 13, 3061–3083 (2001).

    Article  Google Scholar 

  31. Rajan, G. S., Sur, G. S., Mark, J. E., Sharfer, D. W. & Beaucage, G. Preparation and characterisation of some unusually transparent poly(dimethylsiloxane) nanocomposites. J. Polym. Sci. B 41, 1897–1901 (2003).

    Article  Google Scholar 

  32. Sur, G. S. & Mark, J. E. Reinforcing effects from silica-type fillers containing hydrocarbon groups. Polym. Bull. 14, 325–329 (1985).

    Google Scholar 

  33. Mammeri, F., Le Bourhis, E., Rozes, L. & Sanchez, C. Mechanical properties of hybrid organic-inorganic materials. J. Mater. Chem. 15, 3787–3811 (2005).

    Article  Google Scholar 

  34. Sur, G. S. & Mark, J. E. Elastomeric networks cross-linked by silica or titania fillers. Eur. Polym. J. 21, 1051–1052 (1985).

    Article  Google Scholar 

  35. Merkel, T. C. et al. Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002).

    Article  Google Scholar 

  36. Kato, D. et al. Permselective monolayer membrane based on two-dimensional cross-linked polysiloxane LB films for hydrogen peroxide detecting glucose sensors. Chem. Commun. 2616–2617 (2002).

  37. Ichinose, I., Mizuki, S., Ohno, S., Shiraishi, H. & Kunitake, T. Preparation of cross-linked films based on layer-by-layer assembly of polymers. Polym. J. 31, 1065–1070 (1999).

    Article  Google Scholar 

  38. Lutkenhaus, J. L., Hrabak, K. D., McEnnis, K. & Hammond, P. T. Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies. J. Am. Chem. Soc. J. 127, 17228–17234 (2005).

    Article  Google Scholar 

  39. Cho, J., Char, K., Hong, J. D. & Lee, K. B. Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 13, 1076–1078 (2001).

    Article  Google Scholar 

  40. Chiarelli, P. A. et al. Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater. 15, 1167–1171 (2001).

    Article  Google Scholar 

  41. Goedel, W. A. & Heger, R. Elastomeric suspended membranes generated via Langmuir-Blodgett transfer. Langmuir 14, 3470–3474 (1998).

    Article  Google Scholar 

  42. Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nature Mater. 2, 278–283 (2003).

    Article  Google Scholar 

  43. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double networks hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  Google Scholar 

  44. Na, Y. H. et al. Structural characteristics of double networks gels with extremely high mechanical strength. Macromolecules 37, 5370–5374 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the postdoctoral program for foreign researchers of the Japan Society for the Promotion of Science (JSPS) through a fellowship awarded to R.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyoki Kunitake.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie S1 (WMV 4425 kb)

Supplementary Information

Supplementary movie S2 (WMV 4589 kb)

Supplementary Information

Supplementary movie S3 (WMV 4393 kb)

Supplementary Information

Supplementary movie legends and figures S1, S2, S3 (PDF 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vendamme, R., Onoue, SY., Nakao, A. et al. Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nature Mater 5, 494–501 (2006). https://doi.org/10.1038/nmat1655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1655

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing