Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Anisotropy of building blocks and their assembly into complex structures

Abstract

A revolution in novel nanoparticles and colloidal building blocks has been enabled by recent breakthroughs in particle synthesis. These new particles are poised to become the ‘atoms’ and ‘molecules’ of tomorrow’s materials if they can be successfully assembled into useful structures. Here, we discuss the recent progress made in the synthesis of nanocrystals and colloidal particles and draw analogies between these new particulate building blocks and better-studied molecules and supramolecular objects. We argue for a conceptual framework for these new building blocks based on anisotropy attributes and discuss the prognosis for future progress in exploiting anisotropy for materials design and assembly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative examples of recently synthesized anisotropic particle building blocks.
Figure 2: Anisotropy ‘dimensions’ used to describe key anisotropy attributes of particles.
Figure 3: Anisotropy axis E, branching, applied to three distinct kinds of particle.
Figure 4: Combining a ‘minimal’ set of dimensions of particle anisotropy can generate many new building blocks for self-assembly.

Similar content being viewed by others

References

  1. Matijevic, E. Monodispersed metal (hydrous) oxides—a fascinating field of colloid science. Acc. Chem. Res. 14, 22–29 (1981).

    Article  CAS  Google Scholar 

  2. Buining, P. A., Pathmamanoharan, C., Jansen, J. B. H. & Lekkerkerker, H. N. W. Preparation of colloidal boehmite needles by hydrothermal treatment of aluminum alkoxide precursors. J. Am. Chem. Soc. 74, 1303–1307 (1991).

    CAS  Google Scholar 

  3. Ozaki, M., Kratohvil, S. & Matijevic, E. Formation of mondispersed spindle-type hematite particles. J. Colloid Interface Sci. 102, 146–151 (1984).

    Article  CAS  Google Scholar 

  4. van der Kooij, F. M., Kassapidou, K. & Lekkerkerker, H. N. W. Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406, 868–871 (2000).

    Article  CAS  Google Scholar 

  5. LizMarzan, L. M., Giersig, M. & Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329–4335 (1996).

    Article  CAS  Google Scholar 

  6. Caruso, F., Caruso, R. A. & Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998).

    Article  CAS  Google Scholar 

  7. Keville, K. M., Franses, E. I. & Caruthers, J. M. Preparation and characterization of monodisperse polymer microspheroids. J. Colloid Interface Sci. 144, 103–126 (1991).

    Article  CAS  Google Scholar 

  8. Adams, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998).

    Article  CAS  Google Scholar 

  9. Jana, N. R., Gearheart, L. & Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

    Article  CAS  Google Scholar 

  10. Sun, Y. G. & Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  11. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    Article  CAS  Google Scholar 

  12. Jin, R. C. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  Google Scholar 

  13. Cayre, O. J., Paunov, V. N. & Velev, O. D. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques. J. Mater. Chem. 13, 2445–2450 (2003).

    Article  CAS  Google Scholar 

  14. Roh, K. H., Martin, D. C. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nature Mater. 4, 759–763 (2005).

    Article  CAS  Google Scholar 

  15. Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater. 5, 365–369 (2006).

    Article  CAS  Google Scholar 

  16. Braeckmans, K., De Smedt, S. C., Leblans, M., Pauwels, R. & Demeester, J. Encoding microcarriers: Present and future technologies. Nature Rev. Drug Discovery 1, 447–456 (2002).

    Article  CAS  Google Scholar 

  17. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  18. Yin, Y. D., Lu, Y., Gates, B. & Xia, Y. N. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001).

    Article  CAS  Google Scholar 

  19. Rolland, J. P. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127, 10096–10100 (2005).

    Article  CAS  Google Scholar 

  20. Hernandez, C. J. & Mason, T. G. Colloidal alphabet soup: Monodisperse dispersions of shape-designed lithoparticles. J. Phys. Chem. C 111, 4477–4480 (2007).

    Article  CAS  Google Scholar 

  21. Shankar, S. S. et al. Biological synthesis of triangular gold nanoprisms. Nature Mater. 3, 482–488 (2004).

    Article  CAS  Google Scholar 

  22. Bansal, V., Sanyal, A., Rautaray, D., Ahmad, A. & Sastry, M. Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv. Mater. 17, 889–892 (2005).

    Article  CAS  Google Scholar 

  23. Brown, S., Sarikaya, M. & Johnson, E. A genetic analysis of crystal growth. J. Mol. Biol. 299, 725–735 (2000).

    Article  CAS  Google Scholar 

  24. Gou, L. F. & Murphy, C. J. Solution-phase synthesis of Cu2O nanocubes. Nano Lett. 3, 231–234 (2003).

    Article  CAS  Google Scholar 

  25. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. & El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 (1996).

    Article  CAS  Google Scholar 

  26. Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N. A. & Liz-Marzan, L. M. Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir 18, 3694–3697 (2002).

    Article  CAS  Google Scholar 

  27. Greyson, E. C., Barton, J. E. & Odom, T. W. Tetrahedral zinc blende tin sulfide nano- and microcrystals. Small 2, 368–371 (2006).

    Article  CAS  Google Scholar 

  28. Hong, L., Cacciuto, A., Luijten, E. & Granick, S. Clusters of charged Janus spheres. Nano Lett. 6, 2510–2514 (2006).

    Article  CAS  Google Scholar 

  29. Love, J. C., Gates, B. D., Wolfe, D. B., Paul, K. E. & Whitesides, G. M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2, 891–894 (2002).

    Article  CAS  Google Scholar 

  30. Jackson, A. M., Myerson, J. W. & Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Mater. 3, 330–336 (2004).

    Article  CAS  Google Scholar 

  31. Chen, S. H., Wang, Z. L., Ballato, J., Foulger, S. H. & Carroll, D. L. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 16186–16187 (2003).

    Article  CAS  Google Scholar 

  32. Lee, S.-M., Jun, Y., Cho, S.-N. & Cheon, J. Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks. J. Am. Chem. Soc. 124, 11244–11245 (2002).

    Article  CAS  Google Scholar 

  33. Tang, Z. Y., Wang, Y., Shanbhag, S., Giersig, M. & Kotov, N. A. Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: From particles and rods to checkmarks, X-marks, and other unusual shapes. J. Am. Chem. Soc. 128, 6730–6736 (2006).

    Article  CAS  Google Scholar 

  34. Zhang, G., Wang, D. Y. & Möhwald, H. Decoration of microspheres with gold nanodots-giving colloidal spheres valences. Angew. Chem. Int. Edn 44, 7767–7770 (2005).

    Article  CAS  Google Scholar 

  35. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  36. Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  37. Xia, Y. & Halas, N. J. Synthesis and plasmonic properties of nanostructures. Mater. Res. Soc. Bull. 30, 338–343 (2005).

    Article  CAS  Google Scholar 

  38. Glotzer, S. C. Some assembly required. Science 306, 419–420 (2004).

    Article  CAS  Google Scholar 

  39. Glotzer, S. C., Solomon, M. J. & Kotov, N. A. Self-assembly: From nanoscale to microscale colloids. AIChE J. 50, 2978–2985 (2004).

    Article  CAS  Google Scholar 

  40. van Blaaderen, A. Colloids get complex. Nature 439, 545–546 (2006).

    Article  CAS  Google Scholar 

  41. Yethiraj, A. & van Blaaderen, A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421, 513–517 (2003).

    Article  CAS  Google Scholar 

  42. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  43. Bartlett, P. & Campbell, A. I. Three-dimensional binary superlattices of oppositely charged colloids. Phys. Rev. Lett. 95, 128302 (2005).

    Article  Google Scholar 

  44. Maskaly, G. R., Garcia, E. R., Carter, W. C. & Chiang, Y.-M. Ionic colloidal crystals: Ordered, multicomponent structures via controlled heterocoagulation. Phys. Rev. E 73, 014402 (2006).

    Article  Google Scholar 

  45. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  46. Hynninen, A. P., Christova, C. G., van Roij, R., van Blaaderen, A. & Dijkstra, M. Prediction and observation of crystal structures of oppositely charged colloids. Phys. Rev. Lett. 96, 138308 (2006).

    Article  Google Scholar 

  47. Zhang, Z. L. & Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004).

    Article  CAS  Google Scholar 

  48. Mokari, T., Rothenberg, E., Popov, I., Costi, R. & Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

    Article  CAS  Google Scholar 

  49. Zhang, Z. L., Horsch, M. A., Lamm, M. H. & Glotzer, S. C. Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly. Nano Lett. 3, 1341–1346 (2003).

    Article  CAS  Google Scholar 

  50. Loweth, C. J., Caldwell, W. B., Peng, X. P., Alivisatos, A. P. & Schultz, P. G. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Edn 38, 1808–1812 (1999).

    Article  CAS  Google Scholar 

  51. Nelson, D. R. Toward a tetravalent chemistry of colloids. Nano Lett. 2, 1125–1129 (2002).

    Article  CAS  Google Scholar 

  52. De Michele, C., Gabrielli, S., Tartaglia, P. & Sciortino, F. Dynamics in the presence of attractive patchy interactions. J. Phys. Chem. B 110, 8064–8079 (2006).

    Article  CAS  Google Scholar 

  53. Bianchi, E., Largo, J., Tartaglia, P., Zaccarelli, E. & Sciortino, F. Phase diagram of patchy colloids: Towards empty liquids. Phys. Rev. Lett. 97, 168301 (2006).

    Article  Google Scholar 

  54. Kamien, R. D. The geometry of soft materials: A primer. Rev. Mod. Phys. 74, 953–971 (2002).

    Article  Google Scholar 

  55. Ziherl, P. & Kamien, R. D. Maximizing entropy by minimzing area: Towards a new principle of self-organization. J. Phys. Chem. B 105, 10147–10158 (2001).

    Article  CAS  Google Scholar 

  56. de Gennes, P. G. Soft matter. Rev. Mod. Phys. 64, 645–648 (1992).

    Article  Google Scholar 

  57. Casagrande, C. & Veyssié, M. Janus beads—realization and 1st observation of interfacial properties. C.R. Acad. Sci. 306, 1423–1425 (1988).

    Google Scholar 

  58. Iacovella, C. R., Horsch, M. A., Zhang, Z. & Glotzer, S. C. Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants. Langmuir 21, 9488–9494 (2005).

    Article  CAS  Google Scholar 

  59. Van Workum, K. & Douglas, J. F. Symmetry, equivalence, and molecular self-assembly. Phys. Rev. E 73, 031502 (2006).

    Article  Google Scholar 

  60. Mohraz, A. & Solomon, M. J. Direct visualization of colloidal rod assembly by confocal microscopy. Langmuir 21, 5298–5306 (2005).

    Article  CAS  Google Scholar 

  61. Donev, A., Burton, J., Stillinger, F. H. & Torquato, S. Tetratic order in the phase behavior of a hard-rectangle system. Phys. Rev. B 73, 054109 (2006).

    Article  Google Scholar 

  62. Blaak, R., Mulder, B. M. & Frenkel, D. Cubatic phase for tetrapods. J. Chem. Phys. 120, 5486–5492 (2004).

    Article  CAS  Google Scholar 

  63. Schilling, T., Pronk, S., Mulder, B. & Frenkel, D. Monte Carlo study of hard pentagons. Phys. Rev. E 71, 036138 (2005).

    Article  Google Scholar 

  64. John, B. S., Stroock, A. & Escobedo, F. A. Cubatic liquid-crystalline behavior in a system of hard cuboids. J. Chem. Phys. 120, 9383–9389 (2004).

    Article  CAS  Google Scholar 

  65. Gracias, D. H., Tien, J., Breen, T. L., Hsu, C. & Whitesides, G. M. Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000).

    Article  CAS  Google Scholar 

  66. Zhang, Z. L., Keys, A. S., Chen, T. & Glotzer, S. C. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21, 11547–11551 (2005).

    Article  CAS  Google Scholar 

  67. Zerrouki, D. et al. Preparation of doublet, triangular, and tetrahedral colloidal clusters by controlled emulsification. Langmuir 22, 57–62 (2006).

    Article  CAS  Google Scholar 

  68. Rechtsman, M. C., Stillinger, F. H. & Torquato, S. Self-assembly of the simple cubic lattice with an isotropic potential. Phys. Rev. E 74, 021404 (2006).

    Article  Google Scholar 

  69. Tkachenko, A. V. Morphological diversity of DNA-colloidal self-assembly. Phys. Rev. Lett. 89, 148303 (2002).

    Article  Google Scholar 

  70. Petukhov, A. V. et al. Observation of a hexatic columnar liquid crystal of polydisperse colloidal disks. Phys. Rev. Lett. 95, 077801 (2005).

    Article  CAS  Google Scholar 

  71. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  72. Johnson, P. M., van Kats, C. M. & van Blaaderen, A. Synthesis of colloidal silica dumbbells. Langmuir 21, 11510–11517 (2005).

    Article  CAS  Google Scholar 

  73. Lu, Y. et al. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J. Am. Chem. Soc. 125, 12724–12725 (2003).

    Article  CAS  Google Scholar 

  74. Cho, K.-S., Talapin, D. V., Gaschler, W. & Murray, C. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    Article  CAS  Google Scholar 

  75. Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  76. Yu, Y.-Y., Chang, S.-S., Lee, C.-L. & Wang, C. C. R. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997).

    Article  CAS  Google Scholar 

  77. Jackson, A. M., Hu, Y., Silva, P. J. & Stellacci, F. From homoligand- to mixed-ligand-monolayer-protected metal nanoparticles: A scanning tunneling microscopy investigation. J. Am. Chem. Soc. 128, 11135–11149 (2006).

    Article  CAS  Google Scholar 

  78. Martin, B. R. et al. Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv. Mater. 11, 1021–1025 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.C.G. acknowledges support from DoE, NSF and NASA. M.J.S. acknowledges support from NASA and NSF. We are grateful to C. R. Iacovella in the Glotzer group for his graphic artistry in rendering the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharon C. Glotzer or Michael J. Solomon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glotzer, S., Solomon, M. Anisotropy of building blocks and their assembly into complex structures. Nature Mater 6, 557–562 (2007). https://doi.org/10.1038/nmat1949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing