Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering of nanostructured carbon materials with electron or ion beams

Abstract

Irradiating solids with energetic particles is usually thought to introduce disorder, normally an undesirable phenomenon. But recent experiments on electron or ion irradiation of various nanostructures demonstrate that it can have beneficial effects and that electron or ion beams may be used to tailor the structure and properties of nanosystems with high precision. Moreover, in many cases irradiation can lead to self-organization or self-assembly in nanostructures. In this review we survey recent advances in the rapidly evolving area of irradiation effects in nanostructured materials, with particular emphasis on carbon systems because of their technological importance and the unique ability of graphitic networks to reconstruct under irradiation. We dwell not only on the physics behind irradiation of nanostructures but also on the technical applicability of irradiation for nanoengineering of carbon and other systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular models of carbon nanotubes with typical point defects.

© 2002 ElSEVIER

Figure 2: Reconstructions of the atomic network of a carbon nanotube near point defects as predicted by atomistic computer simulations43,50.
Figure 3: Electron-beam engineering of carbon nanostructures: effects of electron irradiation on carbon nanotubes.

© 2005 WILEY-VCH

Figure 4: Using ion irradiation for making nanotube-based electronic devices.

© 2007 AIP

Figure 5: Ion-beam-assisted engineering of carbon nanotubes.

© 2006 WILEY-VCH

Figure 6: Welding of carbon nanostructures by electron and ion beams.

© 2004 AIP

Figure 7: Pressure build-up inside nanotubes and onions.

© 2002 AAAS

Similar content being viewed by others

References

  1. Cook, I. Materials research for fusion energy. Nature Mater. 5, 77–80 (2006).

    CAS  Google Scholar 

  2. Nastasi, M., Mayer, J. & Hirvonen, J. Ion–solid Interactions: Fundamentals and Applications (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  3. Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992).

    CAS  Google Scholar 

  4. Banhart, F. & Ajayan, P. M. Carbon onions as nanoscopic pressure cells for diamond formation, Nature 382, 433–435 (1996).

    CAS  Google Scholar 

  5. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–323 (1998).

    CAS  Google Scholar 

  6. Kis, A. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nature Mater. 3, 153–157 (2004).

    CAS  Google Scholar 

  7. Gómez-Navarro, G. et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nature Mater. 4, 534–539 (2005).

    Google Scholar 

  8. Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C. & Ajayan, P. M. Coalescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000).

    CAS  Google Scholar 

  9. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    CAS  Google Scholar 

  10. Mickelson, W., Aloni, S., Han, W. Q., Cumings, J. & Zettl, A. Packing C60 in boron nitride nanotubes. Science 300, 467–469 (2003).

    CAS  Google Scholar 

  11. Terrones, M. et al. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).

    CAS  Google Scholar 

  12. Sun, L. et al. Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312, 1199–1202 (2006).

    CAS  Google Scholar 

  13. Wesolowski, P., Lyutovich, Y., Banhart, F., Carstanjen, H. D. & Kronmüller, H. Formation of diamond in carbon onions under MeV ion irradiation. Appl. Phys. Lett. 71, 1948–1950 (1997).

    CAS  Google Scholar 

  14. Lifshitz, Y. et al. The mechanism of diamond nucleation from energetic species. Science 297, 1531–1533 (2002).

    CAS  Google Scholar 

  15. Yao, Y. et al. Diamond nucleation by energetic pure carbon bombardment. Phys. Rev. B 72, 035402 (2005).

    Google Scholar 

  16. Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B. Intertube coupling in ropes of SWNTs. Phys. Rev. Lett. 85, 5186–5189 (2000).

    CAS  Google Scholar 

  17. Wei, B. Q., D'Arcy-Gall, J., Ajayan, P. M. & Ramanath, G. Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Appl. Phys. Lett. 83, 3581–3583 (2003).

    CAS  Google Scholar 

  18. Raghuveer, M. S. et al. Nanomachining carbon nanotubes with ion beams Appl. Phys. Lett. 84, 4484–4486 (2004).

    CAS  Google Scholar 

  19. Talapatra, S. et al. Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 95, 097201 (2005).

    CAS  Google Scholar 

  20. Esquinazi, P., Spearmann, D., Höhne, R., Setzer, A. & Butz, T. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91, 227201 (2003).

    CAS  Google Scholar 

  21. Chappert, C. et al. Planar patterned magnetic media obtained by ion irradiation. Science 280, 1919–1922 (1998).

    CAS  Google Scholar 

  22. Bernas, H. et al. Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media. Phys. Rev. Lett. 91, 077203 (2003).

    CAS  Google Scholar 

  23. Akcöltekin, E. et al. Creation of multiple nanodots by single ions. Nature Nanotechnol. 2, 290–294 (2007).

    Google Scholar 

  24. Dhar, S., Davis, R. P. & Feldman, L. C. A novel technique for the fabrication of nanostructures on silicon carbide using amorphization and oxidation, Nanotechnology 17, 4514–4518 (2006).

    CAS  Google Scholar 

  25. Heinig, K. H., Muller, T., Schmidt, B., Strobel, M. & Möller, W. Interfaces under ion irradiation: growth and taming of nanostructures. Appl. Phys. A 77, 17–25 (2003).

    CAS  Google Scholar 

  26. Klaumünzer, S. Modification of nanostructures by high-energy ion beams. Nucl. Instrum. Meth. B 244, 1–7 (2006).

    Google Scholar 

  27. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Google Scholar 

  28. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Google Scholar 

  29. Geim, A. K. & Novoselov, K. S. The rise of grapheme. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  30. Nasibulin, A. G. et al. A novel hybrid carbon material. Nature Nanotechnol. 2, 156–161 (2007).

    CAS  Google Scholar 

  31. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

    CAS  Google Scholar 

  32. Pomoell, J., Krasheninnikov, A. V. & Nordlund, K. Ion ranges and irradiation-induced defects in multi-walled carbon nanotubes. J. Appl. Phys. 96, 2864–2871 (2004).

    CAS  Google Scholar 

  33. Kunert, T. & Schmidt, R. Excitations and fragmentation mechanisms in ion–fullerene collisions, Phys. Rev. Lett. 86, 5258–5261 (2001).

    CAS  Google Scholar 

  34. Ding, F., Jiao, K., Wu, M. & Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett. 98, 075503 (2007).

    Google Scholar 

  35. Osváth, Z. et al. Atomically resolved STM images of carbon nanotube defects produced by Ar+ irradiation. Phys. Rev. B 72, 045429 (2005).

    Google Scholar 

  36. Urita, K., Suenaga, K., Sugai, T., Shinohara, H. & Iijima, S. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap. Phys. Rev. Lett. 94, 155502 (2005).

    Google Scholar 

  37. Raghuveer, M. S. et al. Site-selective functionalization of carbon nanotubes. Adv. Mater. 18, 547–552 (2006).

    CAS  Google Scholar 

  38. Jung, Y. J. et al. Straightening suspended singlewalled carbon nanotubes by ion irradiation. Nano Lett. 4, 1109–1113 (2004).

    CAS  Google Scholar 

  39. Kim, D.-H. et al. Enhancement of the field emission of carbon nanotubes straightened by application of argon ion irradiation. Chem. Phys. Lett. 378, 232–237 (2003).

    CAS  Google Scholar 

  40. Ni, B. et al. A combined computational and experimental study of ion-beam modification of carbon nanotube bundles. J. Phys. Chem. B 105, 12719–12725 (2001).

    CAS  Google Scholar 

  41. Yang, D. Q., Rochette, J. & Sacher, E. Controlled chemical functionalization of multiwalled carbon nanotubes by kiloelectronvolt argon ion treatment and air exposure. Langmuir 21, 8539–8545 (2005).

    CAS  Google Scholar 

  42. Zhu, Y., Yi, T., Zheng, B. & Cao, L. The interaction of C60 fullerene and carbon nanotube with Ar ion beam. Appl. Surf. Sci. 137, 83–90 (1999).

    CAS  Google Scholar 

  43. Krasheninnikov, A. V., Nordlund, K. & Keinonen, J. Production of defects in supported carbon nanotubes under ion irradiation. Phys. Rev. B 65, 165423 (2002).

    Google Scholar 

  44. Lu, A. J. & Pan, B. C. Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504 (2004).

    CAS  Google Scholar 

  45. Rossato, J., Baierle, R. J., Fazzio, A. & Mota, R. Vacancy formation process in carbon nanotubes: First-principles approach. Nano Lett. 5, 197–200 (2005).

    CAS  Google Scholar 

  46. Krasheninnikov, A. V., Lehtinen, P. O., Foster, A. S. & Nieminen, R. M. Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 418, 132–136 (2006).

    CAS  Google Scholar 

  47. Lehtinen, P. O., Foster, A. S., Ma, Y., Krasheninnikov, A. V. & Nieminen, R. M. Irradiation-induced magnetism in graphite: a density functional study. Phys. Rev. Lett. 93, 187202 (2004).

    CAS  Google Scholar 

  48. Telling, R., Ewels, C., El-Barbary, A. & Heggie, M. Wigner defects bridge the graphite gap. Nature Mater. 2, 333–337 (2003).

    CAS  Google Scholar 

  49. El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I. & Briddon, P. R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003).

    Google Scholar 

  50. Kotakoski, J., Krasheninnikov, A. V. & Nordlund, K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: atomistic simulations. Phys. B 74, 245420 (2006).

    Google Scholar 

  51. Kis, A., Jensen, K., Aloni, S., Mickelson, W. & Zettl, A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. 97, 025501 (2006).

    CAS  Google Scholar 

  52. Stone, A. J. & Wales, D. J. Theoretical-studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

    CAS  Google Scholar 

  53. Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K. & Kaski, K. Mechanical properties of carbon nanotubes with vacancy-like defects. Phys. Rev. B 70, 245416 (2004).

    Google Scholar 

  54. da Silva, A., Fazzio, A. & Antonelli, A. Bundling up carbon nanotubes through Wigner defects. Nano Lett. 5, 1045–1049 (2005).

    CAS  Google Scholar 

  55. Banhart, F., Li, J. X. & Krasheninnikov, A. V. Carbon nanotubes under electron irradiation: stability of the tubes and their action as pipes for atom transport. Phys. Rev. B 71, 241408(R) (2005).

    Google Scholar 

  56. Yuzvinsky, T. D. et al. Shrinking a carbon nanotubes. Nano Lett. 6, 2718–2722 (2006).

    CAS  Google Scholar 

  57. Li, J. X. & Banhart, F. The engineering of hot carbon nanotubes with an electron beam. Nano Lett. 4, 1143–1146 (2004).

    CAS  Google Scholar 

  58. Banhart, F., Li, J. X. & Terrones, M. Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Small 1, 953–956 (2005).

    CAS  Google Scholar 

  59. Yuzvinsky, T. D., Fennimore, A. M., Mickelson, W., Esquivias, C. & Zettl, A. Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86, 053109 (2005).

    Google Scholar 

  60. Yoon, M. et al. Zipper mechanism of nanotube fusion: theory and experiment. Phys. Rev. Lett. 92, 075504 (2004).

    Google Scholar 

  61. Suzuki, M., Ishibashi, K., Toratani, K., Tsuya, D. & Aoyagi, Y. Tunnel barrier formation using argon-ion irradiation and single quantum dots in multiwall carbon nanotubes. Appl. Phys. Lett. 81, 2273–2275 (2002).

    CAS  Google Scholar 

  62. Maehashi, K. et al. Formation of single quantum dot in single-walled carbon nanotube channel using focused-ion-beam technique. Appl. Phys. Lett. 90, 023103 (2007).

    Google Scholar 

  63. Ishibashi, K., Tsuya, D., Suzuki, M. & Aoyagi, Y. Fabrication of a single-electron inverter in multiwall carbon nanotubes. Appl. Phys. Lett. 82, 3307–3309 (2003).

    CAS  Google Scholar 

  64. Mikó, C. et al. Effect of electron irradiation on the electrical properties of fibers of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 83, 4622–4624 (2003).

    Google Scholar 

  65. Kim, H. M. et al. Morphological change of multiwalled carbon nanotubes through high-energy (MeV) ion irradiation. J. Appl. Phys. 97, 026103 (2005).

    Google Scholar 

  66. Schittenhelm, H. et al. Synthesis and characterization of single-wall carbon nanotube amorphous diamond thin-film composites. Appl. Phys. Lett. 81, 2097–2099 (2002).

    CAS  Google Scholar 

  67. Kumar, A. et al. Synthesis of confined electrically conducting carbon nanowires by heavy ion irradiation of fullerene thin film. J. Appl. Phys. 101, 014308 (2007).

    Google Scholar 

  68. Kumar, A., Avasthi, D. K., Pivin, J. C., Tripathi, A. & Singh, F. Ferromagnetism induced by heavy-ion irradiaiton in fullerene films. Phys. Rev. B 74, 153409 (2006).

    Google Scholar 

  69. Basiuk, V. A., Kobayashi, K., Negishi, T. K. Y., Basiuk, E. V. & Saniger-Blesa, J. M., Irradiation of single-walled carbon nanotubes with high-energy protons. Nano Lett. 2, 789–791 (2002).

    CAS  Google Scholar 

  70. Neupane, P. P., Manasreh, M. O., Weaver, B. D., Landi, B. J. & Raffaelle, R. P. Proton irradiation effect on single-wall carbon nanotubes in a poly(3-octylthiophene) matrix. Appl. Phys. Lett. 86, 221908 (2005).

    Google Scholar 

  71. Jang, I., Sinnott, S. B., Danailov, D. & Keblinski, P. Molecular dynamics simulation study of carbon nanotubes welding under electron beam irradiation. Nano Lett. 4, 109–114 (2004).

    CAS  Google Scholar 

  72. Krasheninnikov, A. V., Nordlund, K., Keinonen, J. & Banhart, F. Ion-irradiation induced welding of carbon nanotubes. Phys. Rev. B 66, 245403 (2002).

    Google Scholar 

  73. Luzzi, D. E. & Smith, B. W. Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon 38, 1751–1756 (2000).

    CAS  Google Scholar 

  74. Hernández, E. et al. Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3, 1037–1042 (2003).

    Google Scholar 

  75. Sun, L., Rodríguez-Manzo, J. A. & Banhart, F., Elastic deformation of nanometer-sized metal crystals in graphitic shells. Appl. Phys. Lett. 89, 263104 (2006).

    Google Scholar 

  76. Li, J. X. & Banhart, F. The deformation of single, nanometer-sized metal crystals in graphitic shells. Adv. Mater. 17, 1539–1542 (2005).

    CAS  Google Scholar 

  77. Banhart, F., Hernández, E. & Terrones, M. Extreme superheating and supercooling of encapsulated metals in fullerene-like shells. Phys. Rev. Lett. 90, 185502 (2003).

    CAS  Google Scholar 

  78. Zhang, S. et al. Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys. Rev. B 71, 115403 (2005).

    Google Scholar 

  79. Dumitrica, T., Hua, M. & Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl Acad. Sci. USA 103, 6105–6109 (2006).

    CAS  Google Scholar 

  80. Åström, J. A., Krasheninnikov, A. V. & Nordlund, K. Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model. Phys. Rev. Lett. 93, 215503 (2004).

    Google Scholar 

  81. Skákalová, V., Woo, Y., Osváth, Z., Biró, L. P. & Roth, S. Electron transport in Ar-irradiated single wall carbon nanotubes. Phys. Status Solidi B 243, 3346–3350 (2006).

    Google Scholar 

  82. Krasheninnikov, A. V. Predicted scanning microscopy images of carbon nanotubes with atomic vacancies. Solid State Commun. 118, 361–365 (2001).

    CAS  Google Scholar 

  83. Krasheninnikov, A. V., Nordlund, K., Sirviö, M., Salonen, E. & Keinonen, J. Formation of ion irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001).

    Google Scholar 

  84. Makarova, T. & Palacio, F. (eds) Carbon Based Magnetism (Elsevier, Amsterdam, 2006).

    Google Scholar 

  85. Andriotis, A. N., Menon, M., Sheetz, R. M. & Chernozatonskii, L. Magnetic properties of C60 polymers. Phys. Rev. Lett. 90, 026801 (2003).

    Google Scholar 

  86. Chan, J. A., Montanari, B., Gale, J. D., Taylor, S. M. B. J. W. & Harrison, N. M. Magnetic properties of polymerized C60: the influence of defects and hydrogen. Phys. Rev. B 70, 041403(R) (2004).

    Google Scholar 

  87. Zaiser, M. & Banhart, F. Radiation-induced transformation of graphite to diamond. Phys. Rev. Lett. 79, 3680–3683 (1997).

    CAS  Google Scholar 

  88. Lyutovich, Y. & Banhart, F. Low-pressure transformation of graphite to diamond under irradiation. Appl. Phys. Lett. 74, 659–660 (1999).

    CAS  Google Scholar 

  89. Zaiser, M., Lyutovich, Y. & Banhart, F., Irradiation-induced transformation of graphite to diamond: a quantitative study. Phys. Rev. B 62, 3058–3064 (2000).

    CAS  Google Scholar 

  90. Terrones, M. & Terrones, H. The role of defects in graphitic structures. Fullerene Sci. Technol. 4, 517–522 (1996).

    CAS  Google Scholar 

  91. Rodríguez-Manzo, J. A. et al. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nature Nanotechnol. 2, 307–311 (2007).

    Google Scholar 

  92. Stolojan, V., Tison, Y., Chen, G. Y. & Silva, R. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation. Nano Lett. 6, 1837–1841 (2006).

    CAS  Google Scholar 

  93. Golberg, D. & Bando, Y. Electron irradiation-induced solid state phase transformations: application to the study of fullerenes and nanotubes in the B-C-N system. Recent Res. Dev. Appl. Phys. 2, 1–14 (1999).

    CAS  Google Scholar 

  94. Zobelli, A. et al. Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006).

    CAS  Google Scholar 

  95. Xu, S. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005).

    CAS  Google Scholar 

  96. Zhan, J., Bando, Y., Hu, J. & Golberg, D. Nanofabrication of ZnO nanowires. Appl. Phys. Lett. 89, 243111 (2006).

    Google Scholar 

  97. Castro, M., Cuerno, R., Vázquez, L. & Gago, R. Self-organized ordering of nanostructures produced by ion-beam sputtering. Phys. Rev. Lett. 94, 016102 (2005).

    Google Scholar 

  98. Mohanta, S. K., Sonia, R. K., Tripathy, S. & Chua, S. J. Ordered InP nanostructures fabricated by Ar-ion irradiation. Appl. Phys. Lett. 88, 043101 (2006).

    Google Scholar 

  99. Kluth, P. et al. Disorder and cluster formation during ion irradiation of Au nanoparticles in SiO2 . Phys. Rev. B 74, 014202 (2006).

    Google Scholar 

  100. McEuen, P. L. Carbon-based electronics. Nature 393, 15–17 (1998).

    CAS  Google Scholar 

  101. Miyamoto, Y., Berber, S., Yoon, M., Rubio, A. & Tománek, D. Can photo excitations heal defects in carbon nanotubes? Chem. Phys. Lett. 392, 209–213 (2004).

    CAS  Google Scholar 

  102. Krasheninnikov, A. V., Nordlund, K. & Keinonen, J. Carbon nanotubes as masks against ion irradiation: an insight from atomistic simulations. Appl. Phys. Lett. 81, 1101–1103 (2002).

    CAS  Google Scholar 

  103. Wang, Y.-N. & Mišković, Z. L. Interactions of fast ions with carbon nanotubes: self-energy and stopping power. Phys. Rev. A 69, 022901 (2004).

    Google Scholar 

  104. Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).

    Google Scholar 

  105. Banhart, F. Formation and transformation of carbon nanoparticles under electron irradiation. Phil. Trans. R. Soc. Lond. A 362, 2205–2222 (2004).

    CAS  Google Scholar 

  106. Salonen, E., Krasheninnikov, A. V. & Nordlund, K. Beam interactions with materials and atoms. Nucl. Instrum. Meth. B 193, 603–608 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Nordlund, R. M. Nieminen, J. Keinonen, A. S. Foster, J. Kotakoski, M. Sammalkorpi, J. X. Li, L. Sun, J. A. Rodríguez-Manzo, M. Terrones, P. M. Ajayan and other co-workers for many years of collaboration. The preparation of this review was supported by the Academy of Finland through the Centre of Excellence program. Support from the DAAD and ETC (D05/51651) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasheninnikov, A., Banhart, F. Engineering of nanostructured carbon materials with electron or ion beams. Nature Mater 6, 723–733 (2007). https://doi.org/10.1038/nmat1996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing