Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanoelectronics from the bottom up

Abstract

Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core–shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crossbar memory switches.
Figure 2: Electromechanical crossbar memory based on carbon nanotubes.

© 2000 AAAS

Figure 3: Hysteretic-resistor memories based on core–shell nanowires.
Figure 4: Nanowire and nanotube-based transistor logic.

© 2006 ACS

Figure 5: Mixed-scale crossbar demuxes.

© 2005 AAAS

Figure 6: Hybrid crossbar circuits.
Figure 7: Assembly and integration.

© 2007 ACS

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors 2005 edn, available online at http://public.itrs.net/.

  2. Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    Article  CAS  Google Scholar 

  3. Likharev, K. K. in Nano and Giga Challenges in Microelectronics (eds Greer, J., Korkin, A. & Labanowski, J.) 27–68 (Elsevier, Amsterdam, 2003).

    Book  Google Scholar 

  4. McEuen, P. L., Fuhrer, M. S. & Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002).

    Article  Google Scholar 

  5. Lieber, C. M. Nanoscale science and technology: building a big future from small things. Mater. Res. Soc. Bull. 28, 486–491 (2003).

    Article  CAS  Google Scholar 

  6. Heath, J. R., Kuekes, P. J. Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998).

    Article  CAS  Google Scholar 

  7. Stan, M. R., Franzon, P. D., Goldstein, S. C., Lach, J. C. & Ziegler, M. M. Molecular electronics: from devices and interconnect to circuits and architecture. Proc. IEEE 91, 1940–1957 (2003).

    Article  CAS  Google Scholar 

  8. DeHon, A. Array-based architecture for FET-based, nanoscale electronics. IEEE Trans. Nanotechnol. 2, 23–32 (2003).

    Article  Google Scholar 

  9. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    Article  CAS  Google Scholar 

  10. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

    Article  CAS  Google Scholar 

  11. Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).

    Article  CAS  Google Scholar 

  12. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  CAS  Google Scholar 

  13. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  CAS  Google Scholar 

  14. Chen, Y. et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 462–468 (2003).

    Article  CAS  Google Scholar 

  15. Duan, X. F., Huang, Y. & Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2, 487–490 (2002).

    Article  CAS  Google Scholar 

  16. Zankovych, S., Hoffmann, T., Seekamp, J., Bruch, J. U. & Torres, C. M. S. Nanoimprint lithography: challenges and prospects. Nanotechnology 12, 91–95 (2001).

    Article  CAS  Google Scholar 

  17. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

  18. Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

    Article  CAS  Google Scholar 

  19. Brueck, S. R. J. in International Trends in Applied Optics (eds Guenther, A. H. & Holst, G. C.) 85–110 (SPIE, Bellingham, Washington, 2002).

    Google Scholar 

  20. Zhong, Z., Wang, D., Cui, Y., Bockrath, M. W. & Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003).

    Article  CAS  Google Scholar 

  21. Strukov, D. B. & Likharev, K. K. CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005).

    Article  CAS  Google Scholar 

  22. Strukov, D. B. & Likharev, K. K. Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16, 137–148 (2005).

    Article  Google Scholar 

  23. Snider, G. S. & Williams, R. S. Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007).

    Article  Google Scholar 

  24. Snider, G. S. Computing with hysteretic resistor crossbars. Appl. Phys. A. 80, 1165–1172 (2005).

    Article  CAS  Google Scholar 

  25. Kuekes, P. J., Stewart, D. R. & Williams, R. S. The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits. J. Appl. Phys. 97, 034301 (2003).

    Article  Google Scholar 

  26. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  27. Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W. & Tour, J. M. Molecular random access memory cell. Appl. Phys. Lett. 78, 3735–3737 (2001).

    Article  CAS  Google Scholar 

  28. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  Google Scholar 

  29. Lau, C. N., Stewart, D. R., Williams, R. S. & Bockrath, M. Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett. 4, 569–572 (2004).

    Article  CAS  Google Scholar 

  30. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  CAS  Google Scholar 

  31. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  Google Scholar 

  32. Seminario, J. M., Zacarias, A. G. & Tour, J. M. Theoretical study of a molecular resonant tunneling diode. J. Am. Chem. Soc. 122, 3015–3020 (2000).

    Article  CAS  Google Scholar 

  33. Di Ventra, M., Pantelides, S. T. & Lang, N. D. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979–982 (2000).

    Article  CAS  Google Scholar 

  34. Chen, J. et al. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77, 1224–1226 (2000).

    Article  CAS  Google Scholar 

  35. Flood, A. H., Stoddart, J. F., Steuerman, D. W. & Heath, J. R. Whence molecular electronics? Science 306, 2055–2056 (2004).

    Article  CAS  Google Scholar 

  36. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  37. Nantero; http://www.nantero.com/index.html.

  38. Owen, A. E., Lecomber, P. G., Hajto, J., Rose, M. J. & Snell, A. Switching in amorphous devices. Int. J. Electron. 73, 897–906 (1992).

    Article  Google Scholar 

  39. Jafar, M. & Haneman, D. Switching in amorphous-silicon devices. Phys. Rev. B 49, 13611–13615 (1994).

    Article  CAS  Google Scholar 

  40. Scott, J. C. Is there an immortal memory? Science 304, 62 (2004).

    Article  CAS  Google Scholar 

  41. Kuekes, P. J., Robinett, W. & Williams, R. S. Improved voltage margins using linear error-correcting codes in resistor-logic demultiplexers for nanoelectronics. Nanotechnology 16, 1419–1432 (2005).

    Article  Google Scholar 

  42. Hu, J., Branz, H. M., Crandall, R. S., Ward, S. & Wang, Q. Switching and filament formation in hot-wire CVD p-type a-Si:H devices. Thin Solid Films 430, 249–252 (2003).

    Article  CAS  Google Scholar 

  43. Avila, A. & Asomoza, R. Switching in coplanar amorphous hydrogenated silicon devices. Solid State Electron. 44, 17–27 (2000).

    Article  CAS  Google Scholar 

  44. Goronkin, H. & Yang, Y. High-performance emerging solid-state memory technologies. Mater. Res. Soc. Bull. 29, 805–808 (2004).

    Article  CAS  Google Scholar 

  45. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  46. Jung, Y., Lee, S.-H., Ko, D.-K. & Agarwal, R. Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc 128, 14026–14027 (2006).

    Article  CAS  Google Scholar 

  47. Lee, S.-H., Ko, D.-K., Jung, Y. & Agarwal, R. Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires. Appl. Phys. Lett. 89, 223116 (2006).

    Article  Google Scholar 

  48. Yu, D., Wu, J., Gu, Q. & Park, H. Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128, 8148–8149 (2006).

    Article  CAS  Google Scholar 

  49. Meister, S. et al. Synthesis and characterization of phase-change nanowires. Nano Lett 6, 1514–1517 (2006).

    Article  CAS  Google Scholar 

  50. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

    Article  CAS  Google Scholar 

  51. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

    Article  CAS  Google Scholar 

  52. DeHon, A., Lincoln, P. & Savage, J. E. Stochastic assembly of sublithographic nanoscale interfaces. IEEE Trans. Nanotechnol. 2, 165–174 (2003).

    Article  Google Scholar 

  53. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  CAS  Google Scholar 

  54. Yang, C., Zhong, Z. & Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310, 1304–1307 (2005).

    Article  CAS  Google Scholar 

  55. Kuekes, P. J. et al. Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes. Nanotechnology 17, 1052–1061 (2006).

    Article  Google Scholar 

  56. Likharev, K. K. & Strukov, D. B. in Introducing Molecular Electronics (eds Cuniberti, G., Fagas, G. & Richter, K.) 447–477 (Springer, Berlin, 2005).

    Google Scholar 

  57. Jin, S. et al. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4, 915–919 (2004).

    Article  CAS  Google Scholar 

  58. Jung, G. Y. et al. Fabrication of multi-bit crossbar circuits at sub-50 nm half-pitch by using UV-based nanoimprint lithography. J. Photopolym. Sci. Technol. 18, 565–570 (2005).

    Article  CAS  Google Scholar 

  59. Javey, A., Nam, S. W., Friedman, R. S., Yan, H. & Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007).

    Article  CAS  Google Scholar 

  60. Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 100–104 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank many of our colleagues at the University of Michigan and Harvard University, particularly T. Rueckes, Y. Dong, G. Yu, Y. Chen, Z. Zhong, X. Duan, Y. Huang and S. Y. Jo for assistance, and A. DeHon and P. Lincoln for critical discussions. W.L. acknowledges support by the National Science Foundation (CCF-0621823). C.M.L. acknowledges support by Air Force Office of Scientific Research, Defense Advanced Research Projects Agency, Intel, and Samsung Electronics.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Lieber, C. Nanoelectronics from the bottom up. Nature Mater 6, 841–850 (2007). https://doi.org/10.1038/nmat2028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing