Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deformation and failure of protein materials in physiologically extreme conditions and disease

Abstract

Biological protein materials feature hierarchical structures that make up a diverse range of physiological materials. The analysis of protein materials is an emerging field that uses the relationships between biological structures, processes and properties to probe deformation and failure phenomena at the molecular and microscopic level. Here we discuss how advanced experimental, computational and theoretical methods can be used to assess structure–process–property relations and to monitor and predict mechanisms associated with failure of protein materials. Case studies are presented to examine failure phenomena in the progression of disease. From this materials science perspective, a de novo basis for understanding biological processes can be used to develop new approaches for treating medical disorders. We highlight opportunities to use knowledge gained from the integration of multiple scales with physical, biological and chemical concepts for potential applications in materials design and nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of hierarchical multiscale structures of biological protein materials.
Figure 2: Formation and assembly of biological protein materials, including cellular expression of proteins and assembly into larger-scale hierarchical structures.
Figure 3: Universality and diversity of biological protein materials.
Figure 4: Tools for characterization and modelling of deformation and failure of biological protein materials.
Figure 5: Chemomechanical behaviour of protein constituents.
Figure 6: Integration of theory, simulation and experimental techniques.
Figure 7: Role of changes in biological protein material properties in diseases.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell. (Taylor & Francis, 2002).

    Google Scholar 

  2. Wang, N. & Stamenovic, D. Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell. Motil. 23, 535–540 (2002).

    Google Scholar 

  3. Ingber, D. E. et al. in International Review of Cytology: A Survey of Cell Biology Vol 150, 173–224 (Academic, 1994).

    Google Scholar 

  4. Fratzl, P. & Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    CAS  Google Scholar 

  5. Gelse, K., Poschl, E. & Aigner, T. Collagens — structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    CAS  Google Scholar 

  6. Liu, W. et al. Fibrin fibers have extraordinary extensibility and elasticity. Science 313, 634–634 (2006).

    CAS  Google Scholar 

  7. Weisel, J. W. Biophysics: Enigmas of blood clot elasticity. Science 320, 456–457 (2008).

    CAS  Google Scholar 

  8. Brown, A. E. X., Litvinov, R. I., Discher, D. E. & Weisel, J. W. Forced unfolding of the coiled-coils of fibrinogen by single molecule AFM. Biophys. J. 92, 39–41 (2007).

    Google Scholar 

  9. Lim, B. B. C., Lee, E. H., Sotomayor, M. & Schulten, K. Molecular basis of fibrin clot elasticity. Structure 16, 449–459 (2008).

    CAS  Google Scholar 

  10. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: Systems biology. Annu. Rev. Genom. Hum. Genet. 2, 343–372 (2001).

    CAS  Google Scholar 

  11. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    CAS  Google Scholar 

  12. Kim, S. & Coulombe, P. A. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21, 1581–1597 (2007).

    CAS  Google Scholar 

  13. Kreplak, L. & Fudge, D. Biomechanical properties of intermediate filaments: from tissues to single filaments and back. BioEssays 29, 26–35 (2007).

    CAS  Google Scholar 

  14. Herrmann, H. & Aebi, U. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem. 73, 749–789 (2004).

    CAS  Google Scholar 

  15. Strelkov, S. V., Herrmann, H. & Aebi, U. Molecular architecture of intermediate filaments. BioEssays 25, 243–251 (2003).

    CAS  Google Scholar 

  16. Aebi, U., Cohn, J., Buhle, L. & Gerace, L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323, 560–564 (1986).

    CAS  Google Scholar 

  17. Rowat, A. C., Lammerding, J., Herrmann, H. & Aebi, U. Towards an integrated understanding of the structure and mechanics of the cell nucleus. BioEssays 30, 226–236 (2008).

    Google Scholar 

  18. Vaziri, A. & Gopinath, A. Cell and biomolecular mechanics in silico. Nature Mater. (2007).

  19. Vaziri, A. & Mofrad, M. R. K. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J. Biomech. 40, 2053–2062 (2007).

    Google Scholar 

  20. Lim, C. T., Zhou, E. H., Li, A., Vedula, S. R. K. & Fu, H. X. Experimental techniques for single cell and single molecule biomechanics. Mater. Sci. Eng. C: Biomim. Supramol. Syst. 26, 1278–1288 (2006).

    CAS  Google Scholar 

  21. Wilson, K. L., Zastrow, M. S. & Lee, K. K. Lamins and disease: Insights into nuclear infrastructure. Cell 104, 647–650 (2001).

    CAS  Google Scholar 

  22. Dahl, K. N. et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 103, 10271–10276 (2006).

    CAS  Google Scholar 

  23. Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    CAS  Google Scholar 

  24. Omary, M. B., Coulombe, P. A. & McLean, W. H. I. Mechanisms of disease: Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087–2100 (2004).

    CAS  Google Scholar 

  25. Hulmes, D. J. S., Wess, T. J., Prockop, D. J. & Fratzl, P. Radial packing, order, and disorder in collagen fibrils. Biophys. J. 68, 1661–1670 (1995).

    CAS  Google Scholar 

  26. Sasaki, N. & Odajima, S. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136 (1996).

    CAS  Google Scholar 

  27. Orgel, J. P. R. O., Irving, T. C., Miller, A. & Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc. Natl Acad. Sci. USA 103, 9001–9005 (1995).

    Google Scholar 

  28. Weiner, S. & Wagner, H. D. The material bone: Structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    CAS  Google Scholar 

  29. Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nature Mater. 2, 164–168 (2003).

    CAS  Google Scholar 

  30. Ramachandran, G. N. & Kartha, G. Structure of collagen. Nature 176, 593–595 (1955).

    CAS  Google Scholar 

  31. Buehler, M. J. & Wong, S. Y. Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93, 37–43 (2007).

    CAS  Google Scholar 

  32. Gupta, H. S. et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA 103, 17741–17746 (2006).

    CAS  Google Scholar 

  33. Gupta, H. S. et al. Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. J. R. Soc. Interf. 4, 277–282 (2007).

    Google Scholar 

  34. Buehler, M. J. Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290 (2006).

    CAS  Google Scholar 

  35. Gao, H., Ji, B., Jäger, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    CAS  Google Scholar 

  36. Taylor, D., Hazenberg, J. G. & Lee, T. C. Living with cracks: Damage and repair in human bone. Nature Mater. 6, 263–266 (2007).

    CAS  Google Scholar 

  37. Janmey, P. A., Leterrier, J. F. & Herrmann, H. Assembly and structure of neurofilaments. Curr. Opin. Colloid Interf. Sci. 8, 40–47 (2003).

    CAS  Google Scholar 

  38. Bini, E., Knight, D. P. & Kaplan, D. L. Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335, 27–40 (2004).

    CAS  Google Scholar 

  39. Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A. R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl Acad. Sci. USA 105, 6590–6595 (2008).

    CAS  Google Scholar 

  40. Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).

    CAS  Google Scholar 

  41. Zhao, X. J. & Zhang, S. G. Molecular designer self-assembling peptides. Chem. Soc. Rev. 35, 1105–1110 (2006).

    CAS  Google Scholar 

  42. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    CAS  Google Scholar 

  43. Smeenk, J. M. et al. Controlled assembly of macromolecular beta-sheet fibrils. Angew. Chem. Int. Edn 44, 1968–1971 (2005).

    CAS  Google Scholar 

  44. Mershin, A., Cook, B., Kaiser, L. & Zhang, S. G. A classic assembly of nanobiomaterials. Nature Biotechnol. 23, 1379–1380 (2005).

    CAS  Google Scholar 

  45. van Hest, J. C. M. & Tirrell, D. A. Protein-based materials, toward a new level of structural control. Chem. Commun. 1897–1904 (2001).

  46. Zhang, S. G., Lockshin, C., Cook, R. & Rich, A. Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34, 663–672 (1994).

    CAS  Google Scholar 

  47. Kreplak, L., Aebi, U. & Herrmann, H. Molecular mechanisms underlying the assembly of intermediate filaments. Exp. Cell Res. 301, 77–83 (2004).

    CAS  Google Scholar 

  48. Strelkov, S. V., Schumacher, J., Burkhard, P., Aebi, U. & Herrmann, H. Crystal structure of the human lamin a coil 2B dimer: Implications for the head-to-tail association of nuclear lamins. J. Mol. Biol. 343, 1067–1080 (2004).

    CAS  Google Scholar 

  49. Schietke, R. et al. Mutations in vimentin disrupt the cytoskeleton in fibroblasts and delay execution of apoptosis. Eur. J. Cell Biol. 85, 1–10 (2006).

    CAS  Google Scholar 

  50. Sokolova, A. V. et al. Monitoring intermediate filament assembly by small-angle X-ray scattering reveals the molecular architecture of assembly intermediates. Proc. Natl Acad. Sci. USA 103, 16206–16211 (2006).

    CAS  Google Scholar 

  51. Alon, U. Simplicity in biology. Nature 446, 497 (2007).

    CAS  Google Scholar 

  52. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    CAS  Google Scholar 

  53. Ackbarow, T. & Buehler, M. J. Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials Theor. Comput. Nanosci. 5, 1193–1204 (2008).

    CAS  Google Scholar 

  54. Ferrer, J. M. et al. Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl Acad. Sci. USA 105, 9221–9226 (2008).

    CAS  Google Scholar 

  55. Ackbarow, T., Chen, X., Keten, S. & Buehler, M. J. Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. Proc. Natl Acad. Sci. USA 104, 16410–16415 (2007).

    CAS  Google Scholar 

  56. Buehler, M. J., Keten, S. & Ackbarow, T. Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Prog. Mater. Sci. 53, 1101–1241 (2008 ).

    CAS  Google Scholar 

  57. Astbury, W. T. & Street, A. X-ray studies of the structures of hair, wool and related fibres. I. General. Phil. Trans. R. Soc. A 230, 75–101 (1931).

    Google Scholar 

  58. Mittermaier, A. & Kay, L. E. Review: New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228 (2006).

    CAS  Google Scholar 

  59. Gupta, H. S. et al. Synchrotron diffraction study of deformation mechanisms in mineralized tendon. Phys. Rev. Lett. 93 (2004).

  60. Bernstein, F. C. et al. Protein Data Bank: Computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    CAS  Google Scholar 

  61. Le Gros, M. A., McDermott, G. & Larabell, C. A. X-ray tomography of whole cells. Curr. Opin. Struct. Biol. 15, 593–600 (2005).

    CAS  Google Scholar 

  62. Jackson, M. & Mantsch, H. H. The use and misuse of FTIR spectroscopy in the determination of protein-structure. Crit. Rev. Biochem. Molec. Biol. 30, 95–120 (1995).

    CAS  Google Scholar 

  63. Haris, P. I. & Chapman, D. The conformational analysis of peptides using Fourier-transform IR spectroscopy. Biopolymers 37, 251–263 (1995).

    CAS  Google Scholar 

  64. Prater, C. B., Butt, H. J. & Hansma, P. K. Atomic force microscopy. Nature 345, 839–840 (1990).

    Google Scholar 

  65. Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E. & Fernandez, J. M. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384 (1999).

    CAS  Google Scholar 

  66. Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M. & Fernandez, J. M. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002).

    CAS  Google Scholar 

  67. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    CAS  Google Scholar 

  68. Mostaert, A. S., Higgins, M. J., Fukuma, T., Rindi, F. & Jarvis, S. P. Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J. Biol. Phys. 32, 393–401 (2006).

    CAS  Google Scholar 

  69. Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

    CAS  Google Scholar 

  70. Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007).

    CAS  Google Scholar 

  71. Lim, C. T., Dao, M., Suresh, S., Sow, C. H. & Chew, K. T. Large deformation of living cells using laser traps. Acta Mater. 52, 1837–1845 (2004).

    CAS  Google Scholar 

  72. Hassenkam, T. et al. High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35, 4–10 (2004).

    Google Scholar 

  73. Shao, Z. F., Mou, J., Czajkowsky, D. M., Yang, J. & Yuan, J. Y . Biological atomic force microscopy: What is achieved and what is needed. Adv. Phys. 45, 1–86 (1996).

    CAS  Google Scholar 

  74. Fisher, T. E., Marszalek, P. E. & Fernandez, J. M. Stretching single molecules into novel conformations using the atomic force microscope. Nature Struct. Biol. 7, 719–724 (2000).

    CAS  Google Scholar 

  75. Kadler, K. E., Holmes, D. F., Graham, H. & Starborg, T. Tip-mediated fusion involving unipolar collagen fibrils accounts for rapid fibril elongation, the occurrence of fibrillar branched networks in skin and the paucity of collagen fibril ends in vertebrates. Matrix Biol. 19, 359–365 (2000).

    CAS  Google Scholar 

  76. Rainey, J. K., Wen, C. K. & Goh, M. C. Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. Matrix Biol. 21, 647–660 (2002).

    CAS  Google Scholar 

  77. Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater. 4, 612–616 (2005).

    CAS  Google Scholar 

  78. Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).

    CAS  Google Scholar 

  79. Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

    CAS  Google Scholar 

  80. Thompson, J. B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001).

    CAS  Google Scholar 

  81. Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. Nanoscale heterogeneity promotes energy dissipation in bone. Nature Mater. 6, 454–462 (2007).

    CAS  Google Scholar 

  82. Eppell, S. J., Smith, B. N., Kahn, H. & Ballarini, R. Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J. R. Soc. Interf. 3, 117–121 (2006).

    CAS  Google Scholar 

  83. Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nature Struct. Biol. 9, 646–652 (2002).

    CAS  Google Scholar 

  84. Wang, W., Donini, O., Reyes, C. M. & Kollman, P. A. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001).

    CAS  Google Scholar 

  85. Mackerell, A. D. Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 25, 1584–1604 (2004).

    CAS  Google Scholar 

  86. Gautieri, A., Buehler, M. J. & Redaelli, A. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. J. Mech. Behavior Biomed. Mater. 2, 130–137 (2009).

    Google Scholar 

  87. Bell, G. I. Models for specific adhesion of cells to cells. Science 200, 618–627 (1978).

    CAS  Google Scholar 

  88. Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 10 (1940).

    Google Scholar 

  89. Hanggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).

    Google Scholar 

  90. Zhurkov, S. N. Kinetic concept of the strength of solids. Int. J. Fracture Mech. 1, 311–323 (1965).

    CAS  Google Scholar 

  91. Evans, E. Probing the relation between force, lifetime, and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    CAS  Google Scholar 

  92. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 379, 50–53 (1999).

    Google Scholar 

  93. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    CAS  Google Scholar 

  94. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96 (2006).

  95. Hummer, G. & Szabo, A. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys. J. 85, 5–15 (2003).

    CAS  Google Scholar 

  96. Hummer, G. & Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl Acad. Sci. USA 98, 3658–3661 (2001).

    CAS  Google Scholar 

  97. Snow, C. D., Sorin, E. J., Rhee, Y. M. & Pande, V. S. How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct. 34, 43–69 (2005).

    CAS  Google Scholar 

  98. Dietz, H. & Rief, M. Elastic bond network model for protein unfolding mechanics. Phys. Rev. Lett. 100, 098101 (2008).

    Google Scholar 

  99. Seifert, U. Rupture of multiple parallel molecular bonds under dynamic loading. Phys. Rev. Lett. 84, 2750–2753 (2000).

    CAS  Google Scholar 

  100. Erdmann, T. & Schwarz, U. S. Stability of adhesion clusters under constant force. Phys. Rev. Lett. 92, 4 (2004).

    Google Scholar 

  101. Dietz, H., Berkemeier, F., Bertz, M. & Rief, M. Anisotropic deformation response of single protein molecules. Proc. Natl Acad. Sci. USA 103, 12724–12728 (2006).

    CAS  Google Scholar 

  102. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    CAS  Google Scholar 

  103. Sun, Y. L., Luo, Z. P., Fertala, A. & An, K. N. Stretching type II collagen with optical tweezers. J. Biomech. 37, 1665–1669 (2004).

    Google Scholar 

  104. Rief, M., Fernandez, J. M. & Gaub, H. E. Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    CAS  Google Scholar 

  105. Keten, S. & Buehler, M. J. Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008).

    Google Scholar 

  106. Mesquida, P., Riener, C. K., MacPhee, C. E. & McKendry, R. A. Morphology and mechanical stability of amyloid-like peptide fibrils. J. Mater. Sci. Mater. Med. 18, 1325–1331 (2007).

    CAS  Google Scholar 

  107. Iconomidou, V. A. & Hamodrakas, S. J. Natural protective amyloids. Curr. Protein Pept. Sci. 9, 291–309 (2008).

    CAS  Google Scholar 

  108. Hardy, J. & Selkoe, D. J. Medicine: The amyloid hypothesis of Alzheimer's disease. Progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  Google Scholar 

  109. Selkoe, D. J. Alzheimer's disease: Genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    CAS  Google Scholar 

  110. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    CAS  Google Scholar 

  111. Smith, J. F., Knowles, T. P. J., Dobson, C. M., MacPhee, C. E. & Welland, M. E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 103, 15806–15811 (2006).

    CAS  Google Scholar 

  112. Dutt, A., Drew, M. G. B. & Pramanik, A. Beta-sheet mediated self-assembly of dipeptides of Omega-amino acids and remarkable fibrillation in the solid state. Org. Biomol. Chem. 3, 2250 (2005).

    CAS  Google Scholar 

  113. Burkoth, T. S. et al. Structure of the beta-amyloid((10–35)) fibril. J. Am. Chem. Soc. 122, 7883–7889 (2000).

    CAS  Google Scholar 

  114. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS  Google Scholar 

  115. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    CAS  Google Scholar 

  116. Nguyen, H. D. & Hall, C. K. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl Acad. Sci. USA 101, 16180 (2004).

    CAS  Google Scholar 

  117. Hwang, W., Zhang, S. G., Kamm, R. D. & Karplus, M. Kinetic control of dimer structure formation in amyloid fibrillogenesis. Proc. Natl Acad. Sci. USA 101, 12916–12921 (2004).

    CAS  Google Scholar 

  118. Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nature Rev. Mol. Cell Biol. 6, 21–31 (2005).

    CAS  Google Scholar 

  119. Burke, B. & Stewart, C. L. Life at the edge: The nuclear envelope and human disease. Nature Rev. Mol. Cell Biol. 3, 575–585 (2002).

    CAS  Google Scholar 

  120. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    CAS  Google Scholar 

  121. Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    CAS  Google Scholar 

  122. Byers, P. H., Wallis, G. A. & Willing, M. C. Osteogenesis imperfecta: translation of mutation to phenotype. J. Med. Genet. 28, 433–442 (1991).

    CAS  Google Scholar 

  123. Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains. Protein Sci. 18, 161–168 (2009).

    CAS  Google Scholar 

  124. McBride, D. J., Choe, V., Shapiro, J. R. & Brodsky, B. Altered collagen structure in mouse tail tendon lacking the α2(I) chain. J. Mol. Biol. 270, 275–284 (1997).

    CAS  Google Scholar 

  125. Miller, A., Delos, D., Baldini, T., Wright, T. M. & Camacho, N. P. Abnormal mineral-matrix interactions are a significant contributor to fragility in oim/oim bone. Calcif. Tissue Int. 81, 206–214 (2007).

    CAS  Google Scholar 

  126. Sims, T. J., Miles, C. A., Bailey, A. J. & Camacho, N. P. Properties of collagen in OIM mouse tissues. Connect. Tissue Res. 44, 202–205 (2003).

    CAS  Google Scholar 

  127. Grabner, B. et al. Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Bone 29, 453–457 (2001).

    CAS  Google Scholar 

  128. Camacho, N. P. et al. The material basis for reduced mechanical properties in oim bones. J. Bone Mineral. Res. 14, 264–272 (1999).

    CAS  Google Scholar 

  129. Fratzl, P., Paris, O., Klaushofer, K. & Landis, W. J. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J. Clin. Invest. 97, 396–402 (1996).

    CAS  Google Scholar 

  130. Rauch, F. & Glorieux, F. H. Osteogenesis imperfecta. Lancet 363, 1377–1385 (2004).

    CAS  Google Scholar 

  131. Miller, E., Delos, D., Baldini, T., Wright, T. M. & Camacho, N. P. Abnormal mineral–matrix interactions are a significant contributor to fragility in oim/oim bone. Calcif. Tissue Int. 81, 206–214 (2007).

    CAS  Google Scholar 

  132. Misof, K., Landis, W. J., Klaushofer, K. & Fratzl, P. Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J. Clin. Invest. 100, 40–45 (1997).

    CAS  Google Scholar 

  133. Chavassieux, P., Seeman, E. & Delmas, P. D. Insights into material and structural basis of bone fragility from diseases associated with fractures: How determinants of the biomechanical properties of bone are compromised by disease. Endocrine Rev. 28, 151–164 (2007).

    CAS  Google Scholar 

  134. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    CAS  Google Scholar 

  135. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    CAS  Google Scholar 

  136. Cross, S. E., Jin, Y.-S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

    CAS  Google Scholar 

  137. Dao, M., Lim, C. T. & Suresh, S. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003).

    Google Scholar 

  138. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  139. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003).

    CAS  Google Scholar 

  140. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33 (1996).

    CAS  Google Scholar 

  141. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S. V. & Aebi, U. Intermediate filaments: from cell architecture to nanomechanics. Nature Rev. Mol. Cell Biol. 8, 562–573 (2007).

    CAS  Google Scholar 

  142. Lantz, M. A. et al. Stretching the alpha-helix: a direct measure of the hydrogen-bond energy of a single-peptide molecule. Chem. Phys. Lett. 315, 61–68 (1999).

    CAS  Google Scholar 

  143. www.nature.com/horizon/proteinfolding/highlights/figures/s3_nonspec1_f1.html.

Download references

Acknowledgements

This research was supported by the Army Research Office (W911NF-06-1-0291), the National Science Foundation (CAREER Grant CMMI-0642545 and MRSEC DMR-0819762), the Air Force Office of Scientific Research (FA9550-08-1-0321), the Office of Naval Research (N00014-08-1-00844) and the Defense Advanced Research Projects Agency (DARPA) (HR0011-08-1-0067). M.J.B. acknowledges support through the Esther and Harold E. Edgerton Career Development Professorship. We thank L. Kreplak, U. Aebi, H. Herrmann, P. Fratzl, M. Rief, H. Gaub, T. Scheibel and K. Dahl for communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buehler, M., Yung, Y. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Mater 8, 175–188 (2009). https://doi.org/10.1038/nmat2387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing