Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size and shape effects on the order–disorder phase transition in CoPt nanoparticles

Abstract

Chemically ordered bimetallic nanoparticles are promising candidates for magnetic-storage applications. However, the use of sub-10 nm nanomagnets requires further study of possible size effects on their physical properties. Here, the effects of size and morphology on the order–disorder phase transition temperature of CoPt nanoparticles (TCNP) have been investigated experimentally, using transmission electron microscopy, and theoretically, with canonical Monte Carlo simulations. For 2.4–3-nm particles, TCNP is found to be 325–175 C lower than the bulk material transition temperature, consistent with our Monte Carlo simulations. Furthermore, we establish that TCNP is also sensitive to the shape of the nanoparticles, because only one dimension of the particle (that is, in-plane size or thickness) smaller than 3 nm is sufficient to induce a considerable depression of TCNP. This work emphasizes the necessity of taking into account the three-dimensional morphology of nano-objects to understand and control their structural properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of the particles projected in the substrate plane.
Figure 2: Structural analysis by TEM: experimental evidence for the size effect.
Figure 3: Monte Carlo simulations: numerical evidence for the size effect.
Figure 4: 3D morphology of the particles.
Figure 5: Shape effect on the structural properties of CoPt nanoparticles.

Similar content being viewed by others

References

  1. Plumer, M. L., Van Ek, J. & Weller, D. The Physics of Ultra-High-Density Magnetic Recording (Springer, 2001).

    Book  Google Scholar 

  2. Sellmyer, D. J., Yu, M. & Kirby, R. D. Nanostructured magnetic films for extremely high density recording. Nanostruct. Mater. 12, 1021–1026 (1999).

    Article  Google Scholar 

  3. Yu, M., Liu, Y. & Sellmyer, D. J. Nanostructure and magnetic properties of composite CoPt:C films for extremely high-density recording. J. Appl. Phys. 87, 6959–6961 (2000).

    Article  CAS  Google Scholar 

  4. Himpsel, F. J., Ortega, J. E., Mankey, G. J. & Willis, R. F. Magnetic nanostructures. Adv. Phys. 47, 511–597 (1998).

    Article  CAS  Google Scholar 

  5. Weller, D. & Moser, A. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999).

    Article  CAS  Google Scholar 

  6. Ariake, J., Chiba, T., Watanabe, S., Honda, N. & Ouchi, K. Magnetic and structural properties of Co–Pt perpendicular recording media with large magnetic anisotropy. J. Magn. Magn. Mater. 287, 229–233 (2005).

    Article  CAS  Google Scholar 

  7. Klemmer, T., Hoydick, D., Okumura, H., Zhang, B. & Soffa, W. A. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scr. Metallurg. Mater. 33, 1793–1805 (1995).

    Article  CAS  Google Scholar 

  8. Sakuma, A. First principle calculation of the magnetocrystalline anisotropy energy of FePt and CoPt ordered alloys. J. Phys. Soc. Jpn 63, 3053–3058 (1994).

    Article  CAS  Google Scholar 

  9. Christodoulides, J. A. et al. CoPt and FePt thin films for high density recording media. J. Appl. Phys. 87, 6938–6940 (2000).

    Article  CAS  Google Scholar 

  10. Sato, K., Bian, B. & Hirotsu, Y. Fabrication of oriented L10–FePt and FePd nanoparticles with large coercivity. J. Appl. Phys. 91, 8516–8518 (2002).

    Article  CAS  Google Scholar 

  11. Sato, K. & Hirotsu, Y. Magnetoanisotropy, long-range order parameter and thermal stability of isolated L10 FePt nanoparticles with mutual fixed orientation. J. Magn. Magn. Mater. 272–276, 1497–1499 (2004).

    Article  Google Scholar 

  12. Yasuda, H. & Mori, H. Effect of cluster size on the chemical ordering in nanometer-sized Au-75 at.%Cu alloy clusters. Z. Für Phys. D 37, 181–186 (1996).

    Article  CAS  Google Scholar 

  13. Miyazaki, T. et al. Size effect on the ordering of L10 FePt nanoparticles. Phys. Rev. B 72, 144419 (2005).

    Article  Google Scholar 

  14. Takahashi, Y. H., Ohkubo, T., Ohnuma, M. & Hono, K. Size effect on the ordering of FePt granular films. J. Appl. Phys. 93, 7166–7168 (2003).

    Article  CAS  Google Scholar 

  15. Sato, K., Hirotsu, Y., Mori, H., Wang, Z. & Hirayama, T. Long-range order parameter of single L10–FePd nanoparticle determined by nanobeam electron diffraction: Particle size dependence of the order parameter. J. Appl. Phys. 98, 024308 (2005).

    Article  Google Scholar 

  16. Yang, B., Asta, M., Mryasov, O. N., Klemmer, T. J. & Chantrell, R. W. The nature of A1–L10 ordering transitions in alloy nanoparticles: A Monte Carlo study. Acta Mater. 54, 4201–4211 (2006).

    Article  CAS  Google Scholar 

  17. Chepulskii, R. V. & Butler, W. H. Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys. Phys. Rev. B 72, 134205 (2005).

    Article  Google Scholar 

  18. Muller, M. & Albe, K. Lattice Monte Carlo simulations of FePt nanoparticles: Influence of size, composition, and surface segregation on order–disorder phenomena. Phys. Rev. B 72, 094203 (2005).

    Article  Google Scholar 

  19. Moskovkin, P. et al. Model predictions and experimental characterization of Co–Pt alloy clusters. Eur. Phys. J. D 43, 27–32 (2007).

    Article  CAS  Google Scholar 

  20. Moskovkin, P. & Hou, M. Metropolis Monte Carlo predictions of free Co–Pt nanoclusters. J. Alloys Compounds 434–435, 550–554 (2007).

    Article  Google Scholar 

  21. Le Bouar, Y., Loiseau, A. & Finel, A. Origin of the complex wetting behaviour in Co–Pt alloys. Phys. Rev. B 68, 224203 (2003).

    Article  Google Scholar 

  22. Dai, Z. R., Sun, S. & Wang, Z. L. Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett. 1, 443–447 (2001).

    Article  CAS  Google Scholar 

  23. Yu, A. C. C., Mizuno, M., Sasaki, Y., Kondo, H. & Hiraga, K. Structural characteristics and magnetic properties of chemically synthesized CoPt nanoparticles. Appl. Phys. Lett. 81, 3768–3770 (2002).

    Article  CAS  Google Scholar 

  24. Wang, A., Li, T., Zhou, Y., Jiang, H. & Zheng, W. Coupled Co–Pt nanoparticles in C matrix. Mater. Sci Eng. B 103, 118–121 (2003).

    Article  Google Scholar 

  25. Zinke-Allmang, M., Feldman, L. C. & Grabow, M. H. Clustering on surfaces. Surf. Sci. Rep. 16, 377–463 (1992).

    Article  CAS  Google Scholar 

  26. Alloyeau, D., Langlois, C., Ricolleau, C., Le Bouar, Y. & Loiseau, A. A TEM in situ experiment as a guideline for the synthesis of as-grown ordered CoPt nanoparticles. Nanotechnology 18, 375301 (2007).

    Article  Google Scholar 

  27. Alloyeau, D. et al. STEM nanodiffraction technique for structural analysis of CoPt nanoparticles. Ultramicroscopy 108, 656–662 (2008).

    Article  CAS  Google Scholar 

  28. Rosato, V., Guillopé, M. & Legrand, B. Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model. Phil. Mag. A 59, 321–336 (1989).

    Article  Google Scholar 

  29. Rossi, G., Ferrando, R. & Mottet, C. Structure and chemical ordering in CoPt nanoalloys. Faraday Discuss. 138, 193–210 (2008).

    Article  CAS  Google Scholar 

  30. Tournus, F. et al. Evidence of L10 chemical order in CoPt nanoclusters: Direct observation and magnetic signature. Phys. Rev. B 77, 144411 (2008).

    Article  Google Scholar 

  31. Langlois, C. et al. Growth and structural properties of CuAg and CoPt bimetallic nanoparticles. Faraday Discuss. 138, 375–391 (2008).

    Article  CAS  Google Scholar 

  32. Rellinghaus, B. et al. On the L10 ordering kinetics in Fe–Pt nanoparticles. IEEE Trans. Magn. 42, 3048 (2006).

    Article  CAS  Google Scholar 

  33. Alloyeau, D. et al. Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles. Ultramicroscopy 109, 788–796 (2009).

    Article  CAS  Google Scholar 

  34. Cliff, G. & Lorimer, G. W. The quantitative analysis of thin specimen. J. Microsc. 1032, 203–207 (1975).

    Article  Google Scholar 

  35. Van Cappellen, E. The parameterless correction method in X-ray microanalysis. Microsc. Microanal. Microstruct. 1, 1–22 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Region Ile-de-France for convention SESAME 2000 E1435, for the support of the JEOL 2100F electron microscope installed at IMPMC (UMR 7590).

Author information

Authors and Affiliations

Authors

Contributions

D.A. prepared the samples. D.A., C.R. and T.O. developed the STEM/NBD technique and carried out the TEM experiments. D.A. analysed the experimental data. C.M. carried out the Monte Carlo simulations and described them in the article. C.R., Y.L.B., C.L. and A.L. supervised the project. D.A. and C.R. prepared the manuscript. N.B. contributed to the energy-dispersive X-ray data analysis and improved the writing of the article. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to D. Alloyeau.

Supplementary information

Supplementary Information

Supplementary Movie (MOV 3016 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alloyeau, D., Ricolleau, C., Mottet, C. et al. Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nature Mater 8, 940–946 (2009). https://doi.org/10.1038/nmat2574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing