Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single gallium nitride nanowire lasers

Abstract

There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices1,2, including lasers3,4and nonlinear optical frequency converters5. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet–blue light-emitting diodes, lasers and photodetectors6,7. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films8,9. Here we report the observation of ultraviolet–blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry–Perot modes (Q ≈ 103) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV μJ cm−2) supports the idea that the electron–hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet–blue coherent light sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy images of synthesized GaN nanowires.
Figure 2: Individual, isolated GaN nanowire laser.
Figure 3: Spectral power dependence of nanolaser emission.
Figure 4: Near-field microscopy of single GaN nanolaser.

Similar content being viewed by others

References

  1. Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C.M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  2. Wang, J., Gudiksen, M.S., Duan, X., Cui, Y. & Lieber, C.M. Highly polarised photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  CAS  Google Scholar 

  3. Huang, M.H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  Google Scholar 

  4. Johnson, J.C. et al. Single nanowire lasers. J. Phys. Chem. B 105, 11387–11390 (2001).

    Article  CAS  Google Scholar 

  5. Johnson, J.C. et al. Nonlinear optical mixing in single zinc oxide nanowires. Nano Lett. 2, 279–283 (2002).

    Article  CAS  Google Scholar 

  6. Morkoc, H. et al. Large band-gap SiC, III-V Nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363–1398 (1994).

    Article  CAS  Google Scholar 

  7. Nakamura, S., Senoh, M. & Mukai, T. High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl. Phys. Lett. 62, 2390–2392 (1993).

    Article  CAS  Google Scholar 

  8. Chang, S., Rex, N.B., Chang, R.K., Chong, G. & Guido, L.J. Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities. Appl. Phys. Lett. 75, 166–168 (1999).

    Article  CAS  Google Scholar 

  9. Yang, X.H., Schmidt, T.J., Shan, W. & Song, J.J. Above room temperature near ultraviolet lasing from an optically pumped GaN film grown on sapphire. Appl. Phys. Lett. 66, 1–3 (1995).

    Article  CAS  Google Scholar 

  10. Dingle, R., Zetterstrom, R.B., Shaklee, K.L. & Leheny, R.F. Stimulated emission and laser action in gallium nitride. Appl. Phys. Lett. 19, 5–7 (1971).

    Article  CAS  Google Scholar 

  11. Asif Khan, M., Olson, D.T., Van Hove, J.M. & Kuznia, J.N. Stimulated emission from photopumped GaN films. Appl. Phys. Lett. 58, 1515–1517 (1991).

    Article  Google Scholar 

  12. Campillo, A.J. & Chang, R.K. in Optical Processes in Microcavities Ch. 5 (eds Campillo, A.J. & Chang, R.K.) 167–208 (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  13. Chylek, P. Resonance structure of Mie scattering: distance between resonances. J. Opt. Soc. Am. A 1, 822–830 (1984).

    Article  Google Scholar 

  14. Gerard, J.M. et al. Quantum boxes as active probes for photonic microstructrues: the pillar microcavity case. Appl. Phys. Lett. 69, 449–451 (1996).

    Article  CAS  Google Scholar 

  15. Duan, X. & Lieber, C.M. Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188–189 (2000).

    Article  CAS  Google Scholar 

  16. Han, W., Fan, S., Li, Q. & Hu, Y. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287–1289 (1997).

    Article  CAS  Google Scholar 

  17. Huang, M.H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001).

    Article  CAS  Google Scholar 

  18. Bidnyk, S., Schmidt, T.J., Little, B.D. & Song, J.J. Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700K. Appl. Phys. Lett. 74, 1–3 (1999).

    Article  CAS  Google Scholar 

  19. Preschilla, N.A. et al. Nanocrystalline gallium nitride thin films. Appl. Phys. Lett. 77, 1861–1863 (2000).

    Article  Google Scholar 

  20. Domen Domen, K., Kondo, K., Kuramata, A. & Tanahashi, T. Gain analysis for surface emission by optical pumping of wurtzite GaN. Appl. Phys. Lett. 69, 94–96 (1996).

    Article  Google Scholar 

  21. Binet, F. et al. Realization and optical characterization of etched mirror facets in GaN cavities. Appl. Phys. Lett. 72, 960–962 (1998).

    Article  CAS  Google Scholar 

  22. Binet, F., Duboz, J.Y., Off, J. & Scholz, F. High-excitation photoluminescence in GaN: Hot-carrier effects and the Mott transition. Phys. Rev. B 60, 4715–4722 (1999).

    Article  CAS  Google Scholar 

  23. Bagnall, D.M. et al. Optically-pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70, 2230–2232 (1997).

    Article  CAS  Google Scholar 

  24. Edjer, E. Refractive index of GaN. Phys. Status Solidi A. 6, 445–448 (1971).

    Article  Google Scholar 

  25. Svelto, O. Principles of Lasers 168 (Plenum, New York, 1998).

    Book  Google Scholar 

  26. Jursenas, S. et al. Decay of stimulated and spontaneous emission in highly excited homoepitaxial GaN. Appl. Phys. Lett. 78, 3776–3779 (2001).

    Article  CAS  Google Scholar 

  27. Schaller, R.D. et al. Nonlinear chemical imaging nanomicroscopy: From second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy. J. Phys. Chem. B 106, 5143–5154 (2002).

    Article  CAS  Google Scholar 

  28. Gmachl, C. et al. High power directional emission from microlasers with chaotic resonators. Science 280, 1556–1564 (1998).

    Article  CAS  Google Scholar 

  29. Slusher, R.E. & Mohideen, U. In Optical Processes in Microcavities Ch. 9 (eds Campillo, A.J. & Chang, R.) 315–338 (World Scientific, Singapore, 1996).

    Book  Google Scholar 

Download references

Acknowledgements

J.C.J., K.P.K., R.D.S. and R.J.S. are supported by the Physical Sciences Division of the National Science Foundation. H.C. and P.Y. are supported by the Camille and Henry Dreyfus Foundation, 3M Corporation, Beckman Foundation, the National Science Foundation and the University of California, Berkeley. P.Y. is an Alfred P. Sloan Research Fellow. Work at the Lawrence Berkeley National Laboratory was supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the US Department of Energy. We thank the National Center for Electron Microscopy for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peidong Yang or Richard J. Saykally.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J., Choi, HJ., Knutsen, K. et al. Single gallium nitride nanowire lasers. Nature Mater 1, 106–110 (2002). https://doi.org/10.1038/nmat728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing