Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wigner defects bridge the graphite gap

Abstract

We present findings on the structure, energies and behaviour of defects in irradiated graphitic carbon materials. Defect production due to high-energy nuclear radiations experienced in graphite moderators is generally associated with undesirable changes in internal energy, microstructure and physical properties—the so-called Wigner effect. On the flip side, the controlled introduction and ability to handle such defects in the electron beam is considered a desirable way to engineer the properties of carbon nanostructures. In both cases, the atomic-level details of structure and interaction are only just beginning to be understood. Here, using a model system of crystalline graphite, we show from first-principles calculations, new details in the behaviour of vacancy and interstitial defects. We identify a prominent barrier-state to energy release, reveal a surprising ability of vacancy defects to bridge the widely spaced atomic layers, and discuss physical property and microstructure changes during irradiation, including interactions with dislocations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The zoo of close-proximity vacancies in adjacent layers in unsheared AB-stacked graphite.
Figure 2: The V21(ββ) and V22(ββ) interplanar divacancies.
Figure 3: The core atoms surrounding the fourfold coordinated 'spiro' interstitial, expected to exist within the core of basal dislocations.
Figure 4: Schematic of stacking fault in graphite, showing relative shifts between layers and the corresponding perfect fault energy.
Figure 5: Plan view of the intimate Frenkel pair defect.

Similar content being viewed by others

References

  1. Simmons, J.H.W. Radiation Damage in Graphite (Pergamon, London, 1965).

    Book  Google Scholar 

  2. Arnold, L. Windscale 1957: Anatomy of a Nuclear Accident (Palgrave Macmillan, London, 1995).

    Book  Google Scholar 

  3. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

    Article  CAS  Google Scholar 

  4. Thrower, P.A. The study of defects in graphite by transmission electron microscopy. Chem. Phys. Carbon 5, 217–319 (1969).

    CAS  Google Scholar 

  5. Kelly, B.T. The Physics of Graphite (Applied Science, London, 1981).

    Google Scholar 

  6. Kelly, B.T., Marsden, B.J. & Hall, K. Irradiation Damage in Graphite due to Fast Neutrons in Fission and Fusion Systems TECDOC-1154. (International Atomic Energy Agency, Vienna, Austria). Available online at http://www.iaea.org

  7. Iwata, T. Fine structure of Wigner energy release spectrum in neutron-irradiated graphite. J. Nucl. Mater. 133–134, 361–364 (1985).

    Article  Google Scholar 

  8. Coulson, C.A. & Poole, M.D. Calculations of the formation energy of vacancies in graphite crystals. Carbon 2, 275–279 (1964).

    Article  CAS  Google Scholar 

  9. Thrower, P.A. & Loader, R.T. Interstitial atom energies in graphite. Carbon 7, 467–477 (1969).

    Article  CAS  Google Scholar 

  10. Nicholson, A.P.P. & Bacon, D.J. A defect molecule calculation for the vacancy in graphite. Carbon 13, 275–282 (1975).

    Article  CAS  Google Scholar 

  11. Zunger, A. & Englman, R. Self-consistent LCAO calculation of the electronic properties of graphite. II. Point vacancy in the two-dimensional crystal. Phys. Rev. B. 17, 642–661 (1978).

    Article  CAS  Google Scholar 

  12. Abrahamson, J. & Maclagan, G.A.R. Theoretical studies of interstitials in graphite. Carbon 22, 291–295 (1984).

    Article  CAS  Google Scholar 

  13. Kaxiras, E. & Pandey, K.C. Energetics of defects and diffusion mechanisms in graphite. Phys. Rev. Lett. 61, 2693–2696 (1988).

    Article  CAS  Google Scholar 

  14. Xu, C.H., Fu, C.L. & Pedraza, D.F. Simulations of point-defect properties in graphite by a tight-binding-force model. Phys. Rev. B 48, 13273–13279 (1993).

    Article  CAS  Google Scholar 

  15. Nordlund, K., Keinomen, J. & Mattila, T. Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett. 77, 699–702 (1996).

    Article  CAS  Google Scholar 

  16. Hjort, M. & Stafström, S. Modeling vacancies in graphite via the Hückel method. Phys. Rev. B 61, 14089–14094 (2000).

    Article  CAS  Google Scholar 

  17. Salonen, E., Krasheninnikov, A.V. & Nordlund, K. Ion-irradiation-induced defects in bundles of carbon nanotubes. Nucl. Instrum. Meth. B 193, 603–608 (2002).

    Article  CAS  Google Scholar 

  18. Iwata, T., Nihira, T. & Matsuo, H. Irradiation and annealing effects on the c-axis electrical resistivity of graphite. J. Phys. Soc. Japan 36, 123–129 (1974).

    Article  CAS  Google Scholar 

  19. Coutinho, J., Jones, R., Briddon, P.R. & Öberg, S. Oxygen and dioxygen centers in Si and Ge: Density-functional calculations. Phys. Rev. B 62, 10824–10840 (2000).

    Article  CAS  Google Scholar 

  20. Payne, M.C., Teter, M.P., Allan, D.C., Aria, T.A. & Joannopoulos, J.D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article  CAS  Google Scholar 

  21. Kelly, K.F. & Halas, N.J. Determination of a and b site defects on graphite using C60-adsorbed STM tips. Surf. Sci. 416, L1085–L1089 (1998).

    Article  CAS  Google Scholar 

  22. Thrower, P.A. & Mayer, R.M. Point defects and self-diffusion in graphite. Phys. Status Solidi A 47, 11–37 (1978).

    Article  CAS  Google Scholar 

  23. Asari, E., Kitajima, M., Nakamura, K.G. & Kawabe, T. Thermal relaxation of ion-irradiation damage in grapite. Phys. Rev. B. 47, 11143–11148 (1993).

    Article  CAS  Google Scholar 

  24. Hinman, G.W., Haubold, A., Gardner, J.O. & Layton, J.K. Vacancies and interstitial clusters in irradiated graphite. Carbon 8, 341–351 (1970).

    Article  CAS  Google Scholar 

  25. Heggie, M. et al. LDF calculations of point defects in graphites and fullerenes. Electrochem. Soc. Proc. 98–8, 60–67 (1997).

    Google Scholar 

  26. Mitchell, E.W.J. & Taylor M.R. Mechanism of stored-energy release at 200 °C in electron-irradiated graphite. Nature 208, 638–641 (1965).

    Article  CAS  Google Scholar 

  27. Grennal, A. Direct observations of dislocations in graphite. Nature 182, 448–450 (1958).

    Article  Google Scholar 

  28. Joós, B. & Duesbery, M.S. The Peierls stress of dislocations: An analytic formula. Phys. Rev. Lett. 78, 266–269 (1997).

    Article  Google Scholar 

  29. Xhie, J., Sattler, K., Ge, M. & Venkateswaran, N. Giant and supergiant lattices on graphite. Phys. Rev. B. 47, 15835–15841 (1993).

    Article  CAS  Google Scholar 

  30. Rong, Z.Y. Extended modifications of electronic structures caused by defects: Scanning tunneling microscopy of graphite. Phys. Rev. B 50, 1839–1843 (1994).

    Article  CAS  Google Scholar 

  31. Terrones, M., Terrones, H., Charlier, J.C., Banhart, F. & Ajayan, P.M. Coalescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000).

    Article  CAS  Google Scholar 

  32. Terrones, M. et al. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 75505 (2002).

    Article  CAS  Google Scholar 

  33. Yu, M.F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).

    Article  CAS  Google Scholar 

  34. Esquinazi, P. et al. Ferromagnetism in oriented graphite samples. Phys. Rev. B 66, 024429 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted as part of the Energy Supply Research for the 21st Century scheme with support from the UK Engineering and Physical Sciences Research Council and British Nuclear Fuels. A. J. Wickham is thanked for helpful discussions during this work together with the Sussex High Performance Computing Initiative for provision of computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob H. Telling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telling, R., Ewels, C., El-Barbary, A. et al. Wigner defects bridge the graphite gap. Nature Mater 2, 333–337 (2003). https://doi.org/10.1038/nmat876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing