Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution mapping of copy-number alterations with massively parallel sequencing

Abstract

Cancer results from somatic alterations in key genes, including point mutations, copy-number alterations and structural rearrangements. A powerful way to discover cancer-causing genes is to identify genomic regions that show recurrent copy-number alterations (gains and losses) in tumor genomes. Recent advances in sequencing technologies suggest that massively parallel sequencing may provide a feasible alternative to DNA microarrays for detecting copy-number alterations. Here we present: (i) a statistical analysis of the power to detect copy-number alterations of a given size; (ii) SegSeq, an algorithm to segment equal copy numbers from massively parallel sequence data; and (iii) analysis of experimental data from three matched pairs of tumor and normal cell lines. We show that a collection of 14 million aligned sequence reads from human cell lines has comparable power to detect events as the current generation of DNA microarrays and has over twofold better precision for localizing breakpoints (typically, to within 1 kilobase).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical coverage required to detect single-copy gains and losses.
Figure 2: Segmentation algorithm for aligned sequenced reads.
Figure 3: Mapping the chromosomal breakpoints of homozygous deletions.

Similar content being viewed by others

References

  1. Freeman, J.L. et al. Copy number variation: new insights in genome diversity. Genome Res. 16, 949–961 (2006).

    Article  CAS  Google Scholar 

  2. McCarroll, S.A. & Altshuler, D.M. Copy-number variation and association studies of human disease. Nat. Genet. 39, S37–S42 (2007).

    Article  CAS  Google Scholar 

  3. Beckmann, J.S., Estivill, X. & Antonarakis, S.E. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat. Rev. Genet. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  4. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl. Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  Google Scholar 

  5. Pinkel, D. & Albertson, D.G. Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37, S11–S17 (2005).

    Article  CAS  Google Scholar 

  6. Kallioniemi, A. CGH microarrays and cancer. Curr. Opin. Biotechnol. 19, 36–40 (2008).

    Article  CAS  Google Scholar 

  7. Bailey, J.A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article  CAS  Google Scholar 

  8. Korbel, J.O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  CAS  Google Scholar 

  9. Kidd, J.M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  CAS  Google Scholar 

  10. Wang, T.L. et al. Digital karyotyping. Proc. Natl. Acad. Sci. USA 99, 16156–16161 (2002).

    Article  CAS  Google Scholar 

  11. Shih, I. et al. Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc. Natl. Acad. Sci. USA 102, 14004–14009 (2005).

    Article  CAS  Google Scholar 

  12. Leary, R.J., Cummins, J., Wang, T.L. & Velculescu, V.E. Digital karyotyping. Nat. Protocols 2, 1973–1986 (2007).

    Article  CAS  Google Scholar 

  13. Morozova, O. & Marra, M.A. From cytogenetics to next-generation sequencing technologies: advances in the detection of genome rearrangements in tumors. Biochem. Cell Biol. 86, 81–91 (2008).

    Article  CAS  Google Scholar 

  14. Campbell, P.J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).

    Article  CAS  Google Scholar 

  15. Lai, W.R., Johnson, M.D., Kucherlapati, R. & Park, P.J. Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763–3770 (2005).

    Article  CAS  Google Scholar 

  16. Bignell, G.R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 17, 1296–1303 (2007).

    Article  CAS  Google Scholar 

  17. Yamaguchi, N. et al. NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res. 68, 1881–1888 (2008).

    Article  CAS  Google Scholar 

  18. Hekstra, D., Taussig, A.R., Magnasco, M. & Naef, F. Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. Nucleic Acids Res. 31, 1962–1968 (2003).

    Article  CAS  Google Scholar 

  19. Zhao, X. et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 65, 5561–5570 (2005).

    Article  CAS  Google Scholar 

  20. Nagayama, K. et al. Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosom. Cancer 46, 1000–1010 (2007).

    Article  CAS  Google Scholar 

  21. Guttman, M. et al. Assessing the significance of conserved genomic aberrations using high resolution genomic microarrays. PLoS Genet. 3, e143 (2007).

    Article  Google Scholar 

  22. Wiedemeyer, R. et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell 13, 355–364 (2008).

    Article  CAS  Google Scholar 

  23. Brockman, W. et al. Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res. 18, 763–770 (2008).

    Article  CAS  Google Scholar 

  24. Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).

    Article  Google Scholar 

  25. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  Google Scholar 

  26. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  Google Scholar 

  27. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  28. Venkatraman, E.S. & Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Mermel, M. Berger and E. Hom for commenting on the manuscript. This work was supported by the US National Institutes of Health (grants 5U24CA126546 to M.M. and 5U54HG003-67 to E.S.L.).

Author information

Authors and Affiliations

Authors

Contributions

D.Y.C., G.G., D.B.J., M.M. and E.S.L. designed the study; D.B.J., C.R., C.N. and E.S.L. oversaw sequencing and alignment; D.Y.C. and G.G. created the segmentation algorithm; D.Y.C. and X.Z. experimentally mapped breakpoints; D.Y.C., G.G., D.B.J., M.J.T.O.'K., X.Z., S.L.C., C.R, C.N., M.M. and E.S.L. analyzed the data; D.Y.C., G.G., M.M. and E.S.L. wrote the manuscript.

Corresponding author

Correspondence to Eric S Lander.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Tables 1–3, Supplementary Methods (PDF 1625 kb)

Supplementary Data

Chromosomal breakpoints and copy-number ratios inferred from the segmentation of sequencing data from HCC1954, HCC1143 or NCI-H2347. (PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, D., Getz, G., Jaffe, D. et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6, 99–103 (2009). https://doi.org/10.1038/nmeth.1276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing