Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping the structure and conformational movements of proteins with transition metal ion FRET

Abstract

Visualizing conformational dynamics in proteins has been difficult, and the atomic-scale motions responsible for the behavior of most allosteric proteins are unknown. Here we report that fluorescence resonance energy transfer (FRET) between a small fluorescent dye and a nickel ion bound to a dihistidine motif can be used to monitor small structural rearrangements in proteins. This method provides several key advantages over classical FRET, including the ability to measure the dynamics of close-range interactions, the use of small probes with short linkers, a low orientation dependence, and the ability to add and remove unique tunable acceptors. We used this 'transition metal ion FRET' approach along with X-ray crystallography to determine the structural changes of the gating ring of the mouse hyperpolarization-activated cyclic nucleotide–regulated ion channel HCN2. Our results suggest a general model for the conformational switch in the cyclic nucleotide–binding site of cyclic nucleotide–regulated ion channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measuring distances with transition metal ion FRET.
Figure 2: Mapping distances in HCN2 bound to cAMP with transition metal ion FRET.
Figure 3: Crystal structure of the mouse wild-type HCN2 C-terminal fragment (C-linker and CNBD) in the absence of cAMP.
Figure 4: Structural rearrangements in HCN2 determined with transition metal ion FRET.
Figure 5: The C-helix is stabilized during cAMP-binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Zagotta, W.N. et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425, 200–205 (2003).

    Article  CAS  Google Scholar 

  2. Selvin, P.R. Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334 (1995).

    Article  CAS  Google Scholar 

  3. Posson, D.J. & Selvin, P.R. Extent of voltage sensor movement during gating of shaker K+ channels. Neuron 59, 98–109 (2008).

    Article  CAS  Google Scholar 

  4. Best, R.B. et al. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc. Natl. Acad. Sci. USA 104, 18964–18969 (2007).

    Article  CAS  Google Scholar 

  5. Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002).

    Article  CAS  Google Scholar 

  6. Richmond, T.A., Takahashi, T.T., Shimkhada, R. & Bernsdorf, J. Engineered metal binding sites on green fluorescence protein. Biochem. Biophys. Res. Commun. 268, 462–465 (2000).

    Article  CAS  Google Scholar 

  7. Sandtner, W., Bezanilla, F. & Correa, A.M. In vivo measurement of intramolecular distances using genetically encoded reporters. Biophys. J. 93, L45–L47 (2007).

    Article  CAS  Google Scholar 

  8. Vogel, S.S., Thaler, C. & Koushik, S.V. Fanciful FRET. Sci. STKE 2006, re2 (2006).

    PubMed  Google Scholar 

  9. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).

    Book  Google Scholar 

  10. Arnold, F.H. & Haymore, B.L. Engineered metal-binding proteins: purification to protein folding. Science 252, 1796–1797 (1991).

    Article  CAS  Google Scholar 

  11. Suh, S.S., Haymore, B.L. & Arnold, F.H. Characterization of His-X3-His sites in alpha-helices of synthetic metal-binding bovine somatotropin. Protein Eng. 4, 301–305 (1991).

    Article  CAS  Google Scholar 

  12. Craven, K.B. & Zagotta, W.N. CNG and HCN channels: two peas, one pod. Annu. Rev. Physiol. 68, 375–401 (2006).

    Article  CAS  Google Scholar 

  13. Dale, R.E., Eisinger, J. & Blumberg, W.E. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161–193 (1979).

    Article  CAS  Google Scholar 

  14. Figgis, B.N. & Hitchman, M.A. Ligand Field Theory and Its Applications (Wiley-VCH, New York, 2000).

    Google Scholar 

  15. Forster, T. Experimentelle und theoretische untersuchung des zwischenmolekularen ubergangs von elektronenanregungsenergie. Zeitschrift Fur Naturforschung Section A4, 321-3271949 A 4, 321–327 (1949).

  16. Wolber, P.K. & Hudson, B.S. An analytic solution to the Forster energy transfer problem in two dimensions. Biophys. J. 28, 197–210 (1979).

    Article  CAS  Google Scholar 

  17. Zimet, D.B., Thevenin, B.J., Verkman, A.S., Shohet, S.B. & Abney, J.R. Calculation of resonance energy transfer in crowded biological membranes. Biophys. J. 68, 1592–1603 (1995).

    Article  CAS  Google Scholar 

  18. Miranda, P. et al. FRET with multiply labeled HERG K(+) channels as a reporter of the in vivo coarse architecture of the cytoplasmic domains. Biochim. Biophys. Acta 1783, 1681–1699 (2008).

    Article  CAS  Google Scholar 

  19. Taraska, J.W. & Zagotta, W.N. Structural dynamics in the gating ring of cyclic nucleotide-gated ion channels. Nat. Struct. Mol. Biol. 14, 854–860 (2007).

    Article  CAS  Google Scholar 

  20. Kellis, J.T. Jr., Todd, R.J. & Arnold, F.H. Protein stabilization by engineered metal chelation. Bio/Technology 9, 994–995 (1991).

    Article  CAS  Google Scholar 

  21. Todd, R.J., Van Dam, M.E., Casimiro, D., Haymore, B.L. & Arnold, F.H. Cu(II)-binding properties of a cytochrome c with a synthetic metal-binding site: His-X3-His in an alpha-helix. Proteins 10, 156–161 (1991).

    Article  CAS  Google Scholar 

  22. Rehmann, H., Wittinghofer, A. & Bos, J.L. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat. Rev. Mol. Cell Biol. 8, 63–73 (2007).

    Article  CAS  Google Scholar 

  23. Altieri, S.L. et al. Structural and energetic analysis of activation by a cyclic nucleotide binding domain. J. Mol. Biol. 381, 655–669 (2008).

    Article  CAS  Google Scholar 

  24. Kim, C., Xuong, N.H. & Taylor, S.S. Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307, 690–696 (2005).

    Article  CAS  Google Scholar 

  25. Rehmann, H., Das, J., Knipscheer, P., Wittinghofer, A. & Bos, J.L. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439, 625–628 (2006).

    Article  CAS  Google Scholar 

  26. Horrocks, W.D. Jr., Holmquist, B. & Vallee, B.L. Energy transfer between terbium (III) and cobalt (II) in thermolysin: a new class of metal–metal distance probes. Proc. Natl. Acad. Sci. USA 72, 4764–4768 (1975).

    Article  CAS  Google Scholar 

  27. Flynn, G.E., Black, K.D., Islas, L.D., Sankaran, B. & Zagotta, W.N. Structure and rearrangements in the carboxy-terminal region of SpIH channels. Structure 15, 671–682 (2007).

    Article  CAS  Google Scholar 

  28. McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 63, 32–41 (2007).

    Article  CAS  Google Scholar 

  29. Navaza, J. AMoRe—an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  31. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  32. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  33. Brunger, A.T. Assessment of phase accuracy by cross validation—the free R-value—methods and applications. Acta Crystallogr. D Biol. Crystallogr. 49, 24–36 (1993).

    Article  CAS  Google Scholar 

  34. The C.C.P. 4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

    Article  Google Scholar 

  35. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  36. Schreiter, E.R. et al. Crystal structure of the nickel-responsive transcription factor NikR. Nat. Struct. Biol. 10, 794–799 (2003).

    Article  CAS  Google Scholar 

  37. Telmer, P.G. & Shilton, B.H. Structural studies of an engineered zinc biosensor reveal an unanticipated mode of zinc binding. J. Mol. Biol. 354, 829–840 (2005).

    Article  CAS  Google Scholar 

  38. Wray, J.W., Baase, W.A., Ostheimer, G.J., Zhang, X.J. & Matthews, B.W. Use of a non-rigid region in T4 lysozyme to design an adaptable metal-binding site. Protein Eng. 13, 313–321 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Black, S. Cunnington, S. Simmons and G. Sheridan for technical assistance, the beamline staff at the Advanced Light Source and National Synchrotron Light Source for help with data collection, W. Almers, B. Hille and A. Merz for comments on the manuscript, and E. Gouaux and L. Islas for stimulating discussions. This work was supported by the Howard Hughes Medical Institute and National Institutes of Health (NIH) grants EY10329 to W.N.Z. and R01 NS038631 to E. Gouaux. M.C.P was supported by a Ruth Kirschstein National Research Service Award from the National Eye Institute. J.W.T was supported by a fellowship from the Jane Coffin Childs Foundation and a NIH Pathway to Independence Award (1K99NS064213).

Author information

Authors and Affiliations

Authors

Contributions

J.W.T designed the experiments and analysis. J.W.T and M.C.P. performed fluorescence experiments. N.B.O, G.E.F. and W.N.Z. performed the crystallography. J.W.T and W.N.Z. wrote the manuscript.

Corresponding author

Correspondence to William N Zagotta.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–2 (PDF 2096 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taraska, J., Puljung, M., Olivier, N. et al. Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat Methods 6, 532–537 (2009). https://doi.org/10.1038/nmeth.1341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing