Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution

Abstract

Bisulfite sequencing measures absolute levels of DNA methylation at single-nucleotide resolution, providing a robust platform for molecular diagnostics. We optimized bisulfite sequencing for genome-scale analysis of clinical samples: here we outline how restriction digestion targets bisulfite sequencing to hotspots of epigenetic regulation and describe a statistical method for assessing significance of altered DNA methylation patterns. Thirty nanograms of DNA was sufficient for genome-scale analysis and our protocol worked well on formalin-fixed, paraffin-embedded samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optimizing bisulfite sequencing for genome-scale profiling of human disease samples.

Similar content being viewed by others

References

  1. Esteller, M. Nat. Rev. Genet. 8, 286–298 (2007).

    Article  CAS  Google Scholar 

  2. Lister, R. & Ecker, J.R. Genome Res. 19, 959–966 (2009).

    Article  CAS  Google Scholar 

  3. Meissner, A. et al. Nucleic Acids Res. 33, 5868–5877 (2005).

    Article  CAS  Google Scholar 

  4. Meissner, A. et al. Nature 454, 766–770 (2008).

    Article  CAS  Google Scholar 

  5. Down, T.A. et al. Nat. Biotechnol. 26, 779–785 (2008).

    Article  CAS  Google Scholar 

  6. Serre, D., Lee, B.H. & Ting, A.H. Nucleic Acids Res. published online, doi:10.1093/nar/gkp992 (11 November 2009).

  7. Brunner, A.L. et al. Genome Res. 19, 1044–1056 (2009).

    Article  CAS  Google Scholar 

  8. Irizarry, R.A. et al. Genome Res. 18, 780–790 (2008).

    Article  CAS  Google Scholar 

  9. Irizarry, R.A. et al. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  Google Scholar 

  10. Lister, R. et al. Cell 133, 523–536 (2008).

    Article  CAS  Google Scholar 

  11. Bock, C., Halachev, K., Büch, J. & Lengauer, T. Genome Biol. 10, R14 (2009).

    Article  Google Scholar 

  12. Bibikova, M. et al. Epigenomics 1, 177 (2009).

    Article  CAS  Google Scholar 

  13. Bock, C. et al. Nucleic Acids Res. 36, e55 (2008).

    Article  Google Scholar 

  14. Eckhardt, F. et al. Nat. Genet. 38, 1378–1385 (2006).

    Article  CAS  Google Scholar 

  15. Hellebrekers, D.M. et al. Clin. Cancer Res. 15, 3990–3997 (2009).

    Article  CAS  Google Scholar 

  16. Zhang, W. et al. Cancer Res. 68, 2764–2772 (2008).

    Article  CAS  Google Scholar 

  17. Weisenberger, D.J. et al. Nat. Genet. 38, 787–793 (2006).

    Article  CAS  Google Scholar 

  18. Garrison, W.D. et al. Gastroenterology 130, 1207–1220 (2006).

    Article  CAS  Google Scholar 

  19. Bock, C. Epigenomics 1, 99 (2009).

    Article  CAS  Google Scholar 

  20. Smith, Z.D., Gu, H., Bock, C., Gnirke, A. & Meissner, A. Methods 48, 226 (2009).

    Article  CAS  Google Scholar 

  21. Storey, J.D. & Tibshirani, R. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Halachev (Max Planck Institute for Informatics) for providing genome annotation files and H. Cedar (The Hebrew University of Jerusalem) for providing the human blood DNA samples. C.B. is supported by a Feodor Lynen Fellowship from the Alexander von Humboldt Foundation. A.M. is supported by the Massachusetts Life Science Center and the Pew Charitable Trusts. The described work was in part funded by US National Institutes of Health grants R01HG004401, U54HG03067 and U01ES017155.

Author information

Authors and Affiliations

Authors

Contributions

H.G., C.B., A.G., E.S.L. and A.M. conceived and designed the experiments; H.G. and E.T. performed the experiments; C.B. analyzed data; T.S.M., N.J. and Z.D.S. contributed materials or analysis tools; and H.G., C.B. and A.M. wrote the paper.

Corresponding author

Correspondence to Alexander Meissner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Supplementary Table 1 (PDF 822 kb)

Supplementary Note

Source code of Epigenome pipeline package with documentation and demonstration data. (ZIP 88748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, H., Bock, C., Mikkelsen, T. et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods 7, 133–136 (2010). https://doi.org/10.1038/nmeth.1414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1414

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research