Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

High-throughput in vivo vertebrate screening

Abstract

We demonstrate a high-throughput platform for cellular-resolution in vivo chemical and genetic screens on zebrafish larvae. The system automatically loads zebrafish from reservoirs or multiwell plates, and positions and rotates them for high-speed confocal imaging and laser manipulation of both superficial and deep organs within 19 s without damage. We performed small-scale test screening of retinal axon guidance mutants and neuronal regeneration assays in combination with femtosecond laser microsurgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of zebrafish manipulation and imaging platform.
Figure 2: Orientation, imaging and screening of zebrafish larvae.
Figure 3: Laser microsurgery and neuronal regeneration.
Figure 4: Quantitative assessment of zebrafish health.

Similar content being viewed by others

References

  1. Lieschke, G.J. & Currie, P.D. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  CAS  Google Scholar 

  2. Zon, L.I. & Peterson, R.T. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  Google Scholar 

  3. Rubinstein, A.L. Curr. Opin. Drug Discov. Dev. 6, 218–223 (2003).

    CAS  Google Scholar 

  4. McGrath, P. & Li, C. Drug Discov. Today 13, 394–401 (2008).

    Article  CAS  Google Scholar 

  5. Shin, J.T. & Fishman, M.C. Annu. Rev. Genomics Hum. Genet. 3, 311–340 (2002).

    Article  CAS  Google Scholar 

  6. Karlsson, J., Hofsten, J.V. & Olsson, P.E. Mar. Biotechnol. 3, 522–527 (2001).

    Article  CAS  Google Scholar 

  7. Gehrig, J. et al. Nat. Methods 6, 911–916 (2009).

    Article  CAS  Google Scholar 

  8. Rohde, C.B., Zeng, F., Gonzalez-Rubio, R., Angel, M. & Yanik, M.F. Proc. Natl. Acad. Sci. USA 104, 13891–13895 (2007).

    Article  CAS  Google Scholar 

  9. Funfak, A., Brosing, A., Brand, M. & Kohler, J.M. Lab Chip 7, 1132–1138 (2007).

    Article  CAS  Google Scholar 

  10. Buckley, C.E., Goldsmith, P. & Franklin, R.J.M. Dis. Model. Mech. 1, 221–228 (2008).

    Article  CAS  Google Scholar 

  11. Fricke, C., Lee, J.-S., Geiger-Rudolph, S., Bonhoeffer, F. & Chien, C.-B. Science 292, 507–510 (2001).

    Article  CAS  Google Scholar 

  12. Xiao, T., Roeser, T., Staub, W. & Baier, H. Development 132, 2955–2967 (2005).

    Article  CAS  Google Scholar 

  13. Steinmeyer, J.D. et al. Nat. Protoc. 5, 395–407 (2010).

    Article  CAS  Google Scholar 

  14. Bhatt, D.H., Otto, S.J., Depoister, B. & Fetcho, J.R. Science 305, 254–258 (2004).

    Article  CAS  Google Scholar 

  15. Yanik, M.F. et al. Nature 432, 822 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following funding sources: US National Institutes of Health Director's Innovator award (1-DP2-OD002989–01), Packard award in Science and Engineering, Alfred P. Sloan award, Sparc Grant from the Broad Institute, National Science Foundation Fellowship, Foxconn Sponsorship and the “La Caixa” Graduate Fellowship. We thank A. Amsterdam and N. Hopkins (MIT), and A. Schier and I. Woods (Harvard University) for the fluorescent lateral neuron line; C. Chien (University of Utah) for the fluorescent retinal ganglion line (robo2ti272z/ti272z with Tg(pou4f3:gap43-GFP)s356t)10,11; and S. Johnson (Washington University at St. Louis) and R. Jain and M. Granato (University of Pennsylvania) for the fluorescent Mauthner line Et(tol2:GFP) j1282b.

Author information

Authors and Affiliations

Authors

Contributions

C.P.-M., T.-Y.C., S.C.W. and M.F.Y. designed the experiments and wrote the manuscript. C.P.-M., T.-Y.C., B.K.K. and C.L.G. performed the experiments.

Corresponding author

Correspondence to Mehmet Fatih Yanik.

Ethics declarations

Competing interests

M.F.Y. is founder and chief scientific advisor of Entera Pharmaceuticals. M.F.Y., C.L.G., Christopher B. Rohde and Matthew Angel have a pending patent on whole-organism screening methodologies (US patent application 12/713263) and M.F.Y., C.P.-M., T.-Y.C., C.L.G, and S.C.W. have a pending patent on zebrafish screening technology (US patent application 12/670882).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardo-Martin, C., Chang, TY., Koo, B. et al. High-throughput in vivo vertebrate screening. Nat Methods 7, 634–636 (2010). https://doi.org/10.1038/nmeth.1481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing