Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns

A Corrigendum to this article was published on 28 August 2015

A Corrigendum to this article was published on 30 August 2012

This article has been updated

Abstract

We developed a multicolor neuron labeling technique in Drosophila melanogaster that combines the power to specifically target different neural populations with the label diversity provided by stochastic color choice. This adaptation of vertebrate Brainbow uses recombination to select one of three epitope-tagged proteins detectable by immunofluorescence. Two copies of this construct yield six bright, separable colors. We used Drosophila Brainbow to study the innervation patterns of multiple antennal lobe projection neuron lineages in the same preparation and to observe the relative trajectories of individual aminergic neurons. Nerve bundles, and even individual neurites hundreds of micrometers long, can be followed with definitive color labeling. We traced motor neurons in the subesophageal ganglion and correlated them to neuromuscular junctions to identify their specific proboscis muscle targets. The ability to independently visualize multiple lineage or neuron projections in the same preparation greatly advances the goal of mapping how neurons connect into circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the dBrainbow construct.
Figure 2: Comparison of endogenous and antibody-based fluorescence of UAS-dBrainbow flies.
Figure 3: Expression of UAS-dBrainbow in three projection neuron lineages.
Figure 4: dBrainbow labeling of lineages or individual neurons in different colors.
Figure 5: Expression of UAS-dBrainbow in motor neurons that connect the subesophageal ganglion to the proboscis muscles in sections of a single example of an hs-cre; UAS-dBrainbow; R12D05-GAL4 fly.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 16 February 2011

    In the version of this article initially published online, accession codes were not included. The error has been corrected for the print, PDF and HTML versions of this article.

  • 30 August 2012

    The schematic of the dBrainbow vector construct presented in the original Figure 1 of the paper and its description had incorrect epitope tags. This error has not been corrected in the HTML or PDF versions of the article, but a correct version of the figure as well as full details of the error can be found in the corrigendum.

  • 03 August 2015

    In the version of this article initially published, the sequence reported for the dBrainbow construct was incorrect. The blue fluorescent protein was reported as EBFP2; it is mTFP1. The mKO2 protein is tagged with a V5 epitope and not a Myc epitope, and the EGFP protein is tagged with HSV, not with V5, as detailed in a previous correction to this paper. The red channel reflects endogenous mKO2 fluorescence, not anti-Myc staining. The mKO2 protein is produced by a codon-optimized sequence. These errors have been corrected in the HTML and PDF versions of the article, and the correct sequence is provided.

References

  1. Lichtman, J.W., Livet, J. & Sanes, J.R. A technicolour approach to the connectome. Nat. Rev. Neurosci. 9, 417–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simpson, J.H. Mapping and manipulating neural circuits in the fly brain. Adv. Genet. 65, 79–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Bellen, H.J., Tong, C. & Tsuda, H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 11, 514–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lai, S.L. & Lee, T. Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, H.H., Chen, C.H., Shi, L., Huang, Y. & Lee, T. Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat. Neurosci. 12, 947–953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ai, H.-W., Henderson, J.N., Remington, S.J. & Campbell, R.E. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400, 531–540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Busch, S., Selcho, M., Ito, K. & Tanimoto, H. A map of octopaminergic neurons in the Drosophila brain. J. Comp. Neurol. 513, 643–667 (2009).

    Article  PubMed  Google Scholar 

  10. Masse, N.Y., Turner, G.C. & Jefferis, G.S. Olfactory information processing in Drosophila. Curr. Biol. 19, R700–R713 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Jefferis, G.S., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Wong, A.M., Wang, J.W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Lai, S.L., Awasaki, T., Ito, K. & Lee, T. Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135, 2883–2893 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Siegal, M.L. & Hartl, D.L. Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144, 715–726 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Heidmann, D. & Lehner, C.F. Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen-dependent activity regulation. Dev. Genes Evol. 211, 458–465 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Jefferis, G.S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ito, K. & Awasaki, T. Clonal unit architecture of the adult fly brain. in Brain Development in Drosophila melanogaster Vol. 628. (ed., G.M. Technau) 137–159 (Landes Bioscience and Springer Science and Business Media, 2008).

    Chapter  Google Scholar 

  19. Lee, T., Lee, A. & Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065–4076 (1999).

    CAS  PubMed  Google Scholar 

  20. Siegal, M.L. & Hartl, D.L. Application of Cre/loxP in Drosophila. Site-specific recombination and transgene coplacement. Methods Mol. Biol. 136, 487–495 (2000).

    CAS  PubMed  Google Scholar 

  21. Yagi, R., Mayer, F. & Basler, K. Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc. Natl. Acad. Sci. USA 107, 16166–16171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. de Velasco, B. et al. Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. Dev. Biol. 302, 309–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Potter, C.J. & Luo, L. Octopamine fuels fighting flies. Nat. Neurosci. 11, 989–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Busch, S. & Tanimoto, H. Cellular configuration of single octopamine neurons in Drosophila. J. Comp. Neurol. 518, 2355–2364 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Manoli, D.S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Demir, E. & Dickson, B.J. Fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kimura, K., Hachiya, T., Koganezawa, M., Tazawa, T. & Yamamoto, D. Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 59, 759–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Cachero, S., Ostrovsky, A.D., Yu, J.Y., Dickson, B.J. & Jefferis, G.S. Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589–1601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S. & Dickson, B.J. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602–1614 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Isono, K. & Morita, H. Molecular and cellular designs of insect taste receptor system. Front. Cell Neurosci. 4, 20 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Vosshall, L.B. & Stocker, R.F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Rajashekhar, K.P. & Singh, R.N. Neuroarchitecture of the tritocerebrum of Drosophila melanogaster. J. Comp. Neurol. 349, 633–645 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Tissot, M., Gendre, N. & Stocker, R.F. Drosophila P[Gal4] lines reveal that motor neurons involved in feeding persist through metamorphosis. J. Neurobiol. 37, 237–250 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Gordon, M.D. & Scott, K. Motor Control in a Drosophila Taste Circuit. Neuron 61, 373–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, A. The internal anatomy and histology of the imago of Drosophila melanogaster. in Biology of Drosophila. (ed., Demerec, M.) 420–534 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1950).

    Google Scholar 

  36. Brizzard, B. Epitope tagging. Biotechniques 44, 693–695 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodin, S. & Georgiev, P. Handling three regulatory elements in one transgene: combined use of cre-lox, FLP-FRT, and I-Scel recombination systems. Biotechniques 39, 871–876 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Stocker, R.F., Heimbeck, G., Gendre, N. & de Belle, J.S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Cole, S.H. et al. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. 280, 14948–14955 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Connolly, J.B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, J.S. & Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat. Protoc. 1, 2110–2115 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Panchuk-Voloshina, N. et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47, 1179–1188 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Arnold, E. Shumsky and A. Soell for help with imaging and spectral separation; B. Pfeiffer, A. Nern and G. Rubin (Janelia Farm Research Campus) for sharing vectors and recombinase lines before publication and for the gift of R12D05-GAL4; V. Hartenstein, B. Gerber, T. Lee, B. Baker and P. Keller for helpful discussions about biological applications of dBrainbow; S. Albin, A. Seeds and E. Hoopfer for scientific discussion of the project; D. Grover for statistical advice; and K. Basler, R. Yagi and C. Lehner (University of Zurich) and M. Siegal (New York University) for additional Cre lines.

Author information

Authors and Affiliations

Authors

Contributions

S.H. designed and performed cloning, tested constructs in S2 cells and made the figures. P.C. performed the fly genetics, immunohistochemistry and confocal imaging. C.E.M. generated and analyzed the subesophageal ganglion and proboscis data. D.H. generated the recombinant fly stocks. L.L.L. advised on selection of fluorescent proteins, construct design and the conversion from endogenous fluorescence to antibody. J.H.S. conceived the project, cloned initial test constructs and wrote the paper with help from S.H., P.C., C.E.M. and L.L.L.

Corresponding author

Correspondence to Julie H Simpson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–4 (PDF 4504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampel, S., Chung, P., McKellar, C. et al. Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8, 253–259 (2011). https://doi.org/10.1038/nmeth.1566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1566

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing