Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A custom microarray platform for analysis of microRNA gene expression

Abstract

MicroRNAs are short, noncoding RNA transcripts that post-transcriptionally regulate gene expression. Several hundred microRNA genes have been identified in Caenorhabditis elegans, Drosophila, plants and mammals. MicroRNAs have been linked to developmental processes in C. elegans, plants and humans and to cell growth and apoptosis in Drosophila. A major impediment in the study of microRNA function is the lack of quantitative expression profiling methods. To close this technological gap, we have designed dual-channel microarrays that monitor expression levels of 124 mammalian microRNAs. Using these tools, we observed distinct patterns of expression among adult mouse tissues and embryonic stem cells. Expression profiles of staged embryos demonstrate temporal regulation of a large class of microRNAs, including members of the let-7 family. This microarray technology enables comprehensive investigation of microRNA expression, and furthers our understanding of this class of recently discovered noncoding RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Validation of the labeling method.
Figure 2: Sensitivity and specificity of microRNA microarrays.
Figure 3: Expression data from seven adult mouse tissues, ES cells, embryoid bodies (EB) and four mouse embryo stages.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  Google Scholar 

  3. Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    Article  CAS  Google Scholar 

  4. Zeng, Y., Yi, R. & Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784 (2003).

    Article  CAS  Google Scholar 

  5. Arasu, P., Wightman, B. & Ruvkun, G. Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev. 5, 1825–1833 (1991).

    Article  CAS  Google Scholar 

  6. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  Google Scholar 

  7. Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K. & Slack, F.J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137 (2004).

    Article  CAS  Google Scholar 

  8. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  Google Scholar 

  9. Aravin, A.A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    Article  CAS  Google Scholar 

  10. Sempere, L.F., Sokol, N.S., Dubrovsky, E.B., Berger, E.M. & Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity. Dev. Biol. 259, 9–18 (2003).

    Article  CAS  Google Scholar 

  11. Lim, L.P. et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003).

    Article  CAS  Google Scholar 

  12. Sempere, L.F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13 (2004).

    Article  Google Scholar 

  13. Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K. & Kosik, K.S. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281 (2003).

    Article  CAS  Google Scholar 

  14. Igloi, G.L. Nonradioactive labeling of RNA. Anal. Biochem. 233, 124–129 (1996).

    Article  CAS  Google Scholar 

  15. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004).

    Article  CAS  Google Scholar 

  16. Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32 (Suppl.), 496–501 (2002).

    Article  CAS  Google Scholar 

  17. Wang, Y., Lu, J., Lee, R., Gu, Z. & Clarke, R. Iterative normalization of cDNA microarray data. IEEE Trans. Inf. Technol. Biomed. 6, 29–37 (2002).

    Article  Google Scholar 

  18. Eistetter, H.R. A mouse pluripotent embryonal stem cell line stage-specifically regulates expression of homeo-box containing DNA sequences during differentiation in vitro. Eur. J. Cell Biol. 45, 315–321 (1988).

    CAS  PubMed  Google Scholar 

  19. Leahy, A., Xiong, J.W., Kuhnert, F. & Stuhlmann, H. Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J. Exp. Zool. 284, 67–81 (1999).

    Article  CAS  Google Scholar 

  20. Liu, C.G. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. USA 101, 9740–9744 (2004).

    Article  CAS  Google Scholar 

  21. Schmittgen, T.D., Jiang, J., Liu, Q. & Yang, L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004).

    Article  Google Scholar 

  22. Meister, G. et al. Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  23. Houbaviy, H.B., Murray, M.F. & Sharp, P.A. Embryonic stem cell–specific microRNAs. Dev. Cell 5, 351–358 (2003).

    Article  CAS  Google Scholar 

  24. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Cluster and Treeview software were developed by M. Eisen and generously distributed by Stanford University. The authors acknowledge the UNC Genomics and Microarray Core Facility for assisting in microarray production. The authors thank G. Hannon, Y. Xiong, M. Carmell, and members of the Hammond laboratory for critical reading of the manuscript and discussion of the project. S.M.H. is a General Motors Cancer Research Foundation Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M Hammond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

MicroRNA sequences used for microarray design. (PDF 53 kb)

Supplementary Fig. 2

Normalization of microRNA microarrays. (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, J., Parker, J., Perou, C. et al. A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1, 47–53 (2004). https://doi.org/10.1038/nmeth704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing